Self-Healing Circuits for Space-Applications

Author(s):  
Thomas Panhofer ◽  
Martin Delvai
Author(s):  
Laura Pernigoni ◽  
Ugo Lafont ◽  
Antonio Mattia Grande

AbstractIn the last decade, self-healing materials have become extremely appealing for the field of space applications, due to their technological evolution and the consequent possibility of designing space systems and structures able to repair autonomously after damage arising from impacts with micrometeoroids and orbital debris, from accidental contact with sharp objects, from structural fatigue or simply due to material aging. The integration of these novel materials in the design of spacecraft structures would result in increased reliability and safety leading to longer operational life and missions. Such concepts will bring a decisive boost enabling new mission scenario for the establishment of new orbital stations, settlement on the Moon and human exploration of Mars.The proposed review aims at presenting the newest and most promising self-healing materials and associated technologies for space application, along with the issues related to their current technological limitations in combination with the effect of the space environment. An introductory part about the outlooks and challenges of space exploration and the self-healing concept is followed by a brief description of the space environment and its possible effects on the performance of materials. Self-healing materials are then analysed in detail, moving from the general intrinsic and extrinsic categories down to the specific mechanisms.


Author(s):  
Rafael Vargas-Bernal ◽  
Margarita Tecpoyotl-Torres

A review on the advances achieved in the last 25 years in the development of hybrid nanocomposites based on polymer matrix for aerospace applications is presented here. The chapter analyzes the state-of-the-art strategies used in the design of materials that support the different conditions of the space environment. These materials are aimed primarily at structural applications, electromagnetic interference shielding, self-sensing, and self-healing, although they are not restricted to these applications. The introduction of metallic, ceramic, carbon-based nanomaterials such as carbon nanotubes and graphene, as well as two-dimensional materials have been used with a successful impact. Despite the significant advances that have been reached, much work must be done to achieve complete reliability for all properties required to protect the systems against the hazardous conditions found in space. Therefore, futuristic visions of the actions that must be carried out are raised in this chapter.


2010 ◽  
Vol 2 (8) ◽  
pp. 2218-2225 ◽  
Author(s):  
Hartmut R. Fischer ◽  
Karin Tempelaars ◽  
Aat Kerpershoek ◽  
Theo Dingemans ◽  
M. Iqbal ◽  
...  

Author(s):  
Rafael Vargas-Bernal ◽  
Margarita Tecpoyotl-Torres

A review on the advances achieved in the last 25 years in the development of hybrid nanocomposites based on polymer matrix for aerospace applications is presented here. The chapter analyzes the state-of-the-art strategies used in the design of materials that support the different conditions of the space environment. These materials are aimed primarily at structural applications, electromagnetic interference shielding, self-sensing, and self-healing, although they are not restricted to these applications. The introduction of metallic, ceramic, carbon-based nanomaterials such as carbon nanotubes and graphene, as well as two-dimensional materials have been used with a successful impact. Despite the significant advances that have been reached, much work must be done to achieve complete reliability for all properties required to protect the systems against the hazardous conditions found in space. Therefore, futuristic visions of the actions that must be carried out are raised in this chapter.


2021 ◽  
Vol 10 (1) ◽  
pp. 20210062
Author(s):  
S. G. K. Manikandan ◽  
M. Kamaraj ◽  
C. Jebasihamony

2020 ◽  
Vol 11 (41) ◽  
pp. 6549-6558
Author(s):  
Yohei Miwa ◽  
Mayu Yamada ◽  
Yu Shinke ◽  
Shoichi Kutsumizu

We designed a novel polyisoprene elastomer with high mechanical properties and autonomous self-healing capability at room temperature facilitated by the coexistence of dynamic ionic crosslinks and crystalline components that slowly reassembled.


1982 ◽  
Vol 118 (4) ◽  
pp. 267-272 ◽  
Author(s):  
E. Bonifazi
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document