Nanocomposites for Space Applications

Author(s):  
Rafael Vargas-Bernal ◽  
Margarita Tecpoyotl-Torres

A review on the advances achieved in the last 25 years in the development of hybrid nanocomposites based on polymer matrix for aerospace applications is presented here. The chapter analyzes the state-of-the-art strategies used in the design of materials that support the different conditions of the space environment. These materials are aimed primarily at structural applications, electromagnetic interference shielding, self-sensing, and self-healing, although they are not restricted to these applications. The introduction of metallic, ceramic, carbon-based nanomaterials such as carbon nanotubes and graphene, as well as two-dimensional materials have been used with a successful impact. Despite the significant advances that have been reached, much work must be done to achieve complete reliability for all properties required to protect the systems against the hazardous conditions found in space. Therefore, futuristic visions of the actions that must be carried out are raised in this chapter.

Author(s):  
Rafael Vargas-Bernal ◽  
Margarita Tecpoyotl-Torres

A review on the advances achieved in the last 25 years in the development of hybrid nanocomposites based on polymer matrix for aerospace applications is presented here. The chapter analyzes the state-of-the-art strategies used in the design of materials that support the different conditions of the space environment. These materials are aimed primarily at structural applications, electromagnetic interference shielding, self-sensing, and self-healing, although they are not restricted to these applications. The introduction of metallic, ceramic, carbon-based nanomaterials such as carbon nanotubes and graphene, as well as two-dimensional materials have been used with a successful impact. Despite the significant advances that have been reached, much work must be done to achieve complete reliability for all properties required to protect the systems against the hazardous conditions found in space. Therefore, futuristic visions of the actions that must be carried out are raised in this chapter.


Author(s):  
Laura Pernigoni ◽  
Ugo Lafont ◽  
Antonio Mattia Grande

AbstractIn the last decade, self-healing materials have become extremely appealing for the field of space applications, due to their technological evolution and the consequent possibility of designing space systems and structures able to repair autonomously after damage arising from impacts with micrometeoroids and orbital debris, from accidental contact with sharp objects, from structural fatigue or simply due to material aging. The integration of these novel materials in the design of spacecraft structures would result in increased reliability and safety leading to longer operational life and missions. Such concepts will bring a decisive boost enabling new mission scenario for the establishment of new orbital stations, settlement on the Moon and human exploration of Mars.The proposed review aims at presenting the newest and most promising self-healing materials and associated technologies for space application, along with the issues related to their current technological limitations in combination with the effect of the space environment. An introductory part about the outlooks and challenges of space exploration and the self-healing concept is followed by a brief description of the space environment and its possible effects on the performance of materials. Self-healing materials are then analysed in detail, moving from the general intrinsic and extrinsic categories down to the specific mechanisms.


Author(s):  
Rafael Vargas-Bernal

Commonly, metallic materials are used in practical ways to increase the shielding effectiveness (SE) through an appropriately designed assembly process. Unfortunately, the high density of devices that require it and the poor environmental stability of metals have impeded their massive use. In addition, for applications in the automotive, aerospace, and electronics industries, materials with light weight and good chemical stability are also required. The purpose of this chapter is to describe the impact that two-dimensional materials (or 2D materials) are having on the development of materials used for electromagnetic interference shielding, particularly the impulse of materials such as graphene, MXenes, transition metal dichalcogenides (TMDs), and phosphorene. The advances in the last decade are analyzed and alternatives are proposed that will come in the next decades. The shielding mechanisms presented by the two-dimensional materials are analyzed in detail and the specific applications in which these materials can be used are presented.


Author(s):  
Rafael Vargas-Bernal ◽  
Bárbara Bermúdez-Reyes ◽  
Margarita Tecpoyotl-Torres

Aerospace applications experience electromagnetic interference produced by the space environment and by the materials, devices, and systems used in satellites, space shuttles, the international space station, and airplanes. The advanced materials represent a technological possibility to develop coatings that are able to offer a better shielding effectiveness against electromagnetic interference due to the possibility of controlling its electrical and magnetic properties as well as to that the size of the materials is very similar to the electromagnetic waves that it receives. In this chapter, an analysis of progress over advanced materials is presented with the aim of diffusing the role that nanomaterials have had, have and will have to increase the shielding to electromagnetic interference. Nanomaterials will protect aerospace components in the range of Hz to THz, but the huge advantage is that the range of protection can be optimized according to the technical requirements with a considerable weight reduction.


Author(s):  
Sunil S. Suresh ◽  
Kesiya George ◽  
Smita Mohanty ◽  
Sanjay K. Nayak

Polymeric nanocomposites are significant engineering materials predominantly due to their enormous potential to meet a spectrum of applications, particularly in improving the strength-stiffness properties, thermal properties, optical and electrical properties. The exploitation of polymer nanocomposites in the aerospace industry is found to be attractive in recent times, since they can provide significant strength to the components with lightweight characteristics. In addition, a wide variety of polymers can be tuned with carbon and non-carbon-based nanomaterials and deployed as archetypes in the structural components of aerospace applications. Accordingly, this chapter consider the key properties of different nanomaterials in polymers as a function of nano-scale approach. Furthermore, this chapter is also dealing with the challenges that need to surmount the technological enduring of the polymer nanocomposites for advancements in the aerospace structural applications in the coming future.


Author(s):  
Rafael Vargas-Bernal ◽  
Bárbara Bermúdez-Reyes ◽  
Margarita Tecpoyotl-Torres

Aerospace applications experience electromagnetic interference produced by the space environment and by the materials, devices, and systems used in satellites, space shuttles, the international space station, and airplanes. The advanced materials represent a technological possibility to develop coatings that are able to offer a better shielding effectiveness against electromagnetic interference due to the possibility of controlling its electrical and magnetic properties as well as to that the size of the materials is very similar to the electromagnetic waves that it receives. In this chapter, an analysis of progress over advanced materials is presented with the aim of diffusing the role that nanomaterials have had, have and will have to increase the shielding to electromagnetic interference. Nanomaterials will protect aerospace components in the range of Hz to THz, but the huge advantage is that the range of protection can be optimized according to the technical requirements with a considerable weight reduction.


Author(s):  
Sunil S. Suresh ◽  
Kesiya George ◽  
Smita Mohanty ◽  
Sanjay K. Nayak

Polymeric nanocomposites are significant engineering materials predominantly due to their enormous potential to meet a spectrum of applications, particularly in improving the strength-stiffness properties, thermal properties, optical and electrical properties. The exploitation of polymer nanocomposites in the aerospace industry is found to be attractive in recent times, since they can provide significant strength to the components with lightweight characteristics. In addition, a wide variety of polymers can be tuned with carbon and non-carbon-based nanomaterials and deployed as archetypes in the structural components of aerospace applications. Accordingly, this chapter consider the key properties of different nanomaterials in polymers as a function of nano-scale approach. Furthermore, this chapter is also dealing with the challenges that need to surmount the technological enduring of the polymer nanocomposites for advancements in the aerospace structural applications in the coming future.


2020 ◽  
Vol 5 (11) ◽  
pp. 1447-1452
Author(s):  
Arkady V. Krasheninnikov

Due to their low weight, small size and low power consumption, two-dimensional materials are expected to be used in space applications. This brings about the issue of their radiation hardness, which is briefly discussed in this article.


2018 ◽  
Author(s):  
Penny Perlepe ◽  
Rodolphe Clérac ◽  
Itziar Oyarzabal ◽  
Corine Mathonière

Sign in / Sign up

Export Citation Format

Share Document