Agent based micro grid management system

Author(s):  
J. Oyarzabal ◽  
J. Jimeno ◽  
J. Ruela ◽  
A. Engler ◽  
C. Hardt
Author(s):  
H.V.V. Priyadarshana ◽  
K.T.M. U Hemapala ◽  
W.D.A. S Wijayapala ◽  
V. Saravanan ◽  
M.A. Kalhan S. Boralessa

Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2258 ◽  
Author(s):  
Lilia Tightiz ◽  
Hyosik Yang ◽  
Mohammad Jalil Piran

Micro-grid (MG) deployment has dramatically become more popular with the high penetration of renewable energy resources (RER). This trend brings with it the merits of independent power grid clean energy resource-based systems, and simultaneously the demerits of an unstable grid due to the intermittent nature of RER. Control and monitoring of MG through robust and ubiquitous communication system infrastructure is the solution to overcoming this intermittency. There has been an increasing focus in recent years on using wireless communication technologies as a prominent candidate in holistic proposal for the micro-grid management system (MGMS). The MGMS has been developed using the multi-agent system (MAS), multi-micro-grid (multi-MG), Internet of things (IoT) integration, and cloud concepts requiring new communication specifications, which can be satisfied by next-generation wireless technologies. There is, however, a lack of comprehensive corresponding investigation into management levels of MG interaction requirements and applied communication technologies, as well as a roadmap for wireless communication deployment, especially for the next generation. In this paper, we investigate communication technology applications in the MG and focus on their classification in a way that determines standard gaps when applying wireless for MG control levels. We also explore and categorize the literature that has applied wireless technologies to MG. Moreover, since MGMS has been revolutionized by attaching new technologies and applications to make it an active element of the power system, we address future trends for MGMS and offer a roadmap for applying new enhancements in wireless technologies, especially the fifth generation (5G) of wireless networks with its exclusive characteristics, to implement this novel approach.


2013 ◽  
Vol 133 (9) ◽  
pp. 1652-1657 ◽  
Author(s):  
Takeshi Nagata ◽  
Kosuke Kato ◽  
Masahiro Utatani ◽  
Yuji Ueda ◽  
Kazuya Okamoto ◽  
...  

Author(s):  
Di Liu ◽  
ChunYang Li ◽  
Zhihang Jiang ◽  
Rui Kong ◽  
Lei Wu ◽  
...  

Author(s):  
N.Pooja Et.al

This paper presents an energy management system supported by PI Controller for a residential grid connected micro grid with renewable hybrid generation (wind and photo voltaic) and battery system. Modeling hybrid system includes non conventional energy sources given at sporadic supply conditions and dynamic energy demand, and to make conceptual energy storage with the help of battery system . Designing  an  appropriate  scheme  that dynamically changes modes of renewable integrated system based on the availability of RES power and changes in load. Wind,PV are the primary power supply of the system; battery is going  to  be act  as  a  substitute.The  PI  controller  is developed and carried  out for the aimed hybrid(Wind and PV) energy system to integrate the non conventional energy sources to the serviceability either to grid or to Residential loads.main objective is improvement of transients during switching  periods  by  using an efficient PI controller.maximum power point tracking is also  other objective is energy management system designed for the residential grid connected Micro Grid. Simulations are carried out on the proposed Hybrid energy system using MATLAB/ SIMULINK.


Sign in / Sign up

Export Citation Format

Share Document