Simplified swarm optimization for task assignment problem in distributed computing system

Author(s):  
Wei-Chang Yeh ◽  
Chyh-Ming Lai ◽  
Yen-Cheng Huang ◽  
Tzu-Wei Cheng ◽  
Hsin-Ping Huang ◽  
...  
2010 ◽  
Vol 26-28 ◽  
pp. 1151-1154
Author(s):  
Zong Li Liu ◽  
Jie Cao ◽  
Zhan Ting Yuan

The optimization of complex systems, such as production scheduling systems and control systems, often encounters some difficulties, such as large-scale, hard to model, time consuming to evaluate, NP-hard, multi-modal, uncertain and multi-objective, etc. It is always a hot research topic in academic and engineering fields to propose advanced theory and effective algorithms. As a novel evolutionary computing technique, particle swarm optimization (PSO) is characterized by not being limited by the representation of the optimization problems, and by global optimization ability, which has gained wide attentation and research from both academic and industry fields. The task assignment problem in the enterprise with directed graph model is presented. Task assignment problem with buffer zone is solved via a hybrid PSO algorithm. Simulation result shows that the model and the algorithm are effective to the problem.


2017 ◽  
Vol 58 ◽  
pp. 115-127 ◽  
Author(s):  
Chyh-Ming Lai ◽  
Wei-Chang Yeh ◽  
Yen-Cheng Huang

Author(s):  
Youssef Hami ◽  
Chakir Loqman

This research is an optimal allocation of tasks to processors in order to minimize the total costs of execution and communication. This problem is called the Task Assignment Problem (TAP) with nonuniform communication costs. To solve the latter, the first step concerns the formulation of the problem by an equivalent zero-one quadratic program with a convex objective function using a convexification technique, based on the smallest eigenvalue. The second step concerns the application of the Continuous Hopfield Network (CHN) to solve the obtained problem. The calculation results are presented for the instances from the literature, compared to solutions obtained both the CPLEX solver and by the heuristic genetic algorithm, and show an improvement in the results obtained by applying only the CHN algorithm. We can see that the proposed approach evaluates the efficiency of the theoretical results and achieves the optimal solutions in a short calculation time.


Sign in / Sign up

Export Citation Format

Share Document