Training Sparse Fuzzy Classifiers Using Metaheuristic Optimization

Author(s):  
Tomasz Krzeszowski ◽  
Krzysztof Wiktorowicz
2021 ◽  
Vol 13 (6) ◽  
pp. 3308
Author(s):  
Chandrasekaran Venkatesan ◽  
Raju Kannadasan ◽  
Mohammed H. Alsharif ◽  
Mun-Kyeom Kim ◽  
Jamel Nebhen

Distributed generation (DG) and capacitor bank (CB) allocation in distribution systems (DS) has the potential to enhance the overall system performance of radial distribution systems (RDS) using a multiobjective optimization technique. The benefits of CB and DG injection in the RDS greatly depend on selecting a suitable number of CBs/DGs and their volume along with the finest location. This work proposes applying a hybrid enhanced grey wolf optimizer and particle swarm optimization (EGWO-PSO) algorithm for optimal placement and sizing of DGs and CBs. EGWO is a metaheuristic optimization technique stimulated by grey wolves. On the other hand, PSO is a swarm-based metaheuristic optimization algorithm that finds the optimal solution to a problem through the movement of the particles. The advantages of both techniques are utilized to acquire mutual benefits, i.e., the exploration ability of the EGWO and the exploitation ability of the PSO. The proposed hybrid method has a high convergence speed and is not trapped in local optimal. Using this hybrid method, technical, economic, and environmental advantages are enhanced using multiobjective functions (MOF) such as minimizing active power losses, voltage deviation index (VDI), the total cost of electrical energy, and total emissions from generation sources and enhancing the voltage stability index (VSI). Six different operational cases are considered and carried out on two standard distribution systems, namely, IEEE 33- and 69-bus RDSs, to demonstrate the proposed scheme’s effectiveness extensively. The simulated results are compared with existing optimization algorithms. From the obtained results, it is observed that the proposed EGWO-PSO gives distinguished enhancements in multiobjective optimization of different conflicting objective functions and high-level performance with global optimal values.


2018 ◽  
Vol 70 ◽  
pp. 59-70 ◽  
Author(s):  
Wellison J.S. Gomes ◽  
André T. Beck ◽  
Rafael H. Lopez ◽  
Leandro F.F. Miguel

Transport ◽  
2013 ◽  
Vol 31 (4) ◽  
pp. 389-407 ◽  
Author(s):  
Wenbin Hu ◽  
Bo Du ◽  
Ye Wu ◽  
Huangle Liang ◽  
Chao Peng ◽  
...  

The exact solution and heuristic solution have their own strengths and weaknesses on solving the Vehicle Routing Problems with Time Windows (VRPTW). This paper proposes a hybrid Column Generation Algorithm with Metaheuristic Optimization (CGAMO) to overcome their weaknesses. Firstly, a Modified Labelling Algorithm (MLA) in the sub-problem of path searching is analysed. And a search strategy in CGAMO based on the demand of sub-problem is proposed to improve the searching efficiency. While putting the paths found in the sub-problem into the main problems of CGAMO, the iterations may fall into endless loops. To avoid this problem and keep the main problems in a reasonable size, two conditions on saving the old paths in the main problem are used. These conditions enlarge the number of constraints considered in the iterations to strengthen the limits of dual variables. Through analysing the sub-problem, we can find many useless paths that have no effect on the objective function. Secondly, in order to reduce the number of useless paths and improve the efficiency, this paper proposes a heuristic optimization strategy of CGAMO for dual variables. It is supposed to accelerate the solving speed from the view of on the dual problem. Finally, extensive experiments show that CGAMO achieves a better performance than other state-of-the-art methods on solving VRPTW. The comparative experiments also present the parameters sensitivity analysis, including the different effects of MLA in the different path selection strategies, the characteristics and the applicable scopes of the two pathkeeping conditions in the main problem.


Sign in / Sign up

Export Citation Format

Share Document