Genetic fuzzy system for predictive and decision support modelling in e-learning

Author(s):  
Angela Nebot ◽  
Francisco Mugica ◽  
Felix Castro ◽  
Jesus Acosta
2012 ◽  
Vol 42 (1) ◽  
pp. 166-171 ◽  
Author(s):  
Leandro Ferreira ◽  
Tadayuki Yanagi Junior ◽  
Wilian Soares Lacerda ◽  
Giovanni Francisco Rabelo

Cloacal temperature (CT) of broiler chickens is an important parameter to classify its comfort status; therefore its prediction can be used as decision support to turn on acclimatization systems. The aim of this research was to develop and validate a system using the fuzzy set theory for CT prediction of broiler chickens. The fuzzy system was developed based on three input variables: air temperature (T), relative humidity (RH) and air velocity (V). The output variable was the CT. The fuzzy inference system was performed via Mamdani's method which consisted in 48 rules. The defuzzification was done using center of gravity method. The fuzzy system was developed using MAPLE® 8. Experimental results, used for validation, showed that the average standard deviation between simulated and measured values of CT was 0.13°C. The proposed fuzzy system was found to satisfactorily predict CT based on climatic variables. Thus, it could be used as a decision support system on broiler chicken growth.


2014 ◽  
Vol 3 (4) ◽  
pp. 108
Author(s):  
J Tang ◽  
M Sheykhzade ◽  
BF Clausen ◽  
HCM Boonen

2018 ◽  
Vol 116 ◽  
pp. 590-602 ◽  
Author(s):  
Leila Omidi ◽  
Seyed Abolfazl Zakerian ◽  
Jebraeil Nasl Saraji ◽  
Esmaeil Hadavandi ◽  
Mir Saeed Yekaninejad

Author(s):  
Eppili Jaya ◽  
B. T. Krishna

Target detection is one of the important subfields in the research of Synthetic Aperture Radar (SAR). It faces several challenges, due to the stationary objects, leading to the presence of scatter signal. Many researchers have succeeded on target detection, and this work introduces an approach for moving target detection in SAR. The newly developed scheme named Adaptive Particle Fuzzy System for Moving Target Detection (APFS-MTD) as the scheme utilizes the particle swarm optimization (PSO), adaptive, and fuzzy linguistic rules in APFS for identifying the target location. Initially, the received signals from the SAR are fed through the Generalized Radon-Fourier Transform (GRFT), Fractional Fourier Transform (FrFT), and matched filter to calculate the correlation using Ambiguity Function (AF). Then, the location of target is identified in the search space and is forwarded to the proposed APFS. The proposed APFS is the modification of standard Adaptive genetic fuzzy system using PSO. The performance of the MTD based on APFS is evaluated based on detection time, missed target rate, and Mean Square Error (MSE). The developed method achieves the minimal detection time of 4.13[Formula: see text]s, minimal MSE of 677.19, and the minimal moving target rate of 0.145, respectively.


Sign in / Sign up

Export Citation Format

Share Document