Unconstrained wrist rotating motion capture using sensitive tape based on hetero-core fiber optics

Author(s):  
Masahiko Ito ◽  
Yuya Koyama ◽  
Michiko Nisiyama ◽  
Kazuhiro Watanabe
2021 ◽  
Author(s):  
Hiroki Kamada ◽  
Yuya Koyama ◽  
Michiko Nishiyama ◽  
Kazuhiro Watanabe

Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2528 ◽  
Author(s):  
Hiroshi Yamazaki ◽  
Ichiro Kurose ◽  
Michiko Nishiyama ◽  
Kazuhiro Watanabe

In this paper, a novel pendulum-type accelerometer based on hetero-core fiber optics has been proposed for structural health monitoring targeting large-scale civil infrastructures. Vibration measurement is a non-destructive method for diagnosing the failure of structures by assessing natural frequencies and other vibration patterns. The hetero-core fiber optic sensor utilized in the proposed accelerometer can serve as a displacement sensor with robustness to temperature changes, in addition to immunity to electromagnetic interference and chemical corrosions. Thus, the hetero-core sensor inside the accelerometer measures applied acceleration by detecting the rotation of an internal pendulum. A series of experiments showed that the hetero-core fiber sensor linearly responded to the rotation angle of the pendulum ranging within (−6°, 4°), and furthermore the proposed accelerometer could reproduce the waveform of input vibration in a frequency band of several Hz order.


Fiber optic has extraordinary properties and is suitable in sensor applications due to its special potential. Currently, macro bending characteristics of newly developed hetero core fiber optic element are designed and evaluated. This paper presents the preliminary results obtained from the numerical simulation analysis of the bending sensitivity of U-shape fiber optics toward the 2D electromagnetic wave in terms of mesh, curvature radius, core fiber size, and turn number. Fiber optics with core sizes of 4, 9, 50, and 62.5 μm were designed. In addition, the combination of core diameters 50-4-50, 50-9-50, 62.5-4-62.5, and 62.5-9-62.5 μm is evaluated to compare the outcome of transmission power in terms of hetero core structure of fiber optic. Simulation is performed using COMSOL Multiphysics simulation tool. The developed U-shape fiber optic is designed to sense the distortion of reducing power transmission by comparing input and output power. Results show that the selected mesh depends on the size of geometry bending fiber optics, and fine and finer mesh is the best for U-shape fiber optic. Furthermore, the power flow on the fiber decreases with the decreasing curvature radius and increasing turn number. The fiber with a core size combination of 62.5–4–62.5 um has high sensitivity in terms of loss. The attained results possess higher potential in the field of sensor applications, such as displacement, strain, pressure, and monitoring respiration, on human body. This study serves as a basis for further investigation of nanomaterial coating on fiber optics, thereby enhancing its credibility for sensing.


2011 ◽  
Author(s):  
Jason M. Kriesel ◽  
Nahum Gat ◽  
Bruce E. Bernacki ◽  
Rebecca L. Erikson ◽  
Bret D. Cannon ◽  
...  

2013 ◽  
Vol 41 (5) ◽  
pp. 337
Author(s):  
Hiroyuki SASAKI ◽  
Michiko NISHIYAMA ◽  
Kazuhiro WATANABE

Sign in / Sign up

Export Citation Format

Share Document