An adaptive routing algorithm for ATM networks using a learning automaton

Author(s):  
A.F. Atlasis ◽  
M.P. Saltouros ◽  
G.I. Stassinopoulos ◽  
A.V. Vasilakos
2019 ◽  
Vol 16 (7) ◽  
pp. 195-206 ◽  
Author(s):  
Feng Wang ◽  
Dingde Jiang ◽  
Sheng Qi

2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Wei Zhou ◽  
Zilong Tan ◽  
Shaowen Yao ◽  
Shipu Wang

Resource location in structured P2P system has a critical influence on the system performance. Existing analytical studies of Chord protocol have shown some potential improvements in performance. In this paper a splay tree-based new Chord structure called SChord is proposed to improve the efficiency of locating resources. We consider a novel implementation of the Chord finger table (routing table) based on the splay tree. This approach extends the Chord finger table with additional routing entries. Adaptive routing algorithm is proposed for implementation, and it can be shown that hop count is significantly minimized without introducing any other protocol overheads. We analyze the hop count of the adaptive routing algorithm, as compared to Chord variants, and demonstrate sharp upper and lower bounds for both worst-case and average case settings. In addition, we theoretically analyze the hop reducing in SChord and derive the fact that SChord can significantly reduce the routing hops as compared to Chord. Several simulations are presented to evaluate the performance of the algorithm and support our analytical findings. The simulation results show the efficiency of SChord.


2011 ◽  
Vol 474-476 ◽  
pp. 413-416
Author(s):  
Jia Jia ◽  
Duan Zhou ◽  
Jian Xian Zhang

In this paper, we propose a novel adaptive routing algorithm to solve the communication congestion problem for Network-on-Chip (NoC). The strategy competing for output ports in both X and Y directions is employed to utilize the output ports of the router sufficiently, and to reduce the transmission latency and improve the throughput. Experimental results show that the proposed algorithm is very effective in relieving the communication congestion, and a reduction in average latency by 45.7% and an improvement in throughput by 44.4% are achieved compared with the deterministic XY routing algorithm and the simple XY adaptive routing algorithm.


Sign in / Sign up

Export Citation Format

Share Document