Low-Complexity Hybrid ARQ Scheme for Polar Codes with Higher-Order Modulation

Author(s):  
Kuangda Tian ◽  
Rongke Liu ◽  
Alexander Vardy ◽  
Runxin Wang
Author(s):  
R. A. Morozov ◽  
P. V. Trifonov

Introduction:Practical implementation of a communication system which employs a family of polar codes requires either to store a number of large specifications or to construct the codes by request. The first approach assumes extensive memory consumption, which is inappropriate for many applications, such as those for mobile devices. The second approach can be numerically unstable and hard to implement in low-end hardware. One of the solutions is specifying a family of codes by a sequence of subchannels sorted by reliability. However, this solution makes it impossible to separately optimize each code from the family.Purpose:Developing a method for compact specifications of polar codes and subcodes.Results:A method is proposed for compact specification of polar codes. It can be considered a trade-off between real-time construction and storing full-size specifications in memory. We propose to store compact specifications of polar codes which contain frozen set differences between the original pre-optimized polar codes and the polar codes constructed for a binary erasure channel with some erasure probability. Full-size specification needed for decoding can be restored from a compact one by a low-complexity hardware-friendly procedure. The proposed method can work with either polar codes or polar subcodes, allowing you to reduce the memory consumption by 15–50 times.Practical relevance:The method allows you to use families of individually optimized polar codes in devices with limited storage capacity. 


2019 ◽  
Vol 9 (5) ◽  
pp. 831
Author(s):  
Yusheng Xing ◽  
Guofang Tu

In this paper, we propose a low-complexity ordered statistics decoding (OSD) algorithm called threshold-based OSD (TH-OSD) that uses a threshold on the discrepancy of the candidate codewords to speed up the decoding of short polar codes. To determine the threshold, we use the probability distribution of the discrepancy value of the maximal likelihood codeword with a predefined parameter controlling the trade-off between the error correction performance and the decoding complexity. We also derive an upper-bound of the word error rate (WER) for the proposed algorithm. The complexity analysis shows that our algorithm is faster than the conventional successive cancellation (SC) decoding algorithm in mid-to-high signal-to-noise ratio (SNR) situations and much faster than the SC list (SCL) decoding algorithm. Our addition of a list approach to our proposed algorithm further narrows the error correction performance gap between our TH-OSD and OSD. Our simulation results show that, with appropriate thresholds, our proposed algorithm achieves performance close to OSD’s while testing significantly fewer codewords than OSD, especially with low SNR values. Even a small list is sufficient for TH-OSD to match OSD’s error rate in short-code scenarios. The algorithm can be easily extended to longer code lengths.


2014 ◽  
Vol 32 (5) ◽  
pp. 958-966 ◽  
Author(s):  
Ubaid U. Fayyaz ◽  
John R. Barry
Keyword(s):  

2016 ◽  
Vol 20 (12) ◽  
pp. 2354-2357 ◽  
Author(s):  
Yijin Li ◽  
Rongke Liu ◽  
Runxin Wang

Sign in / Sign up

Export Citation Format

Share Document