Power Quality Disturbance Classification based on Adaptive Compressed Sensing and Machine Learning

Author(s):  
Long Cheng ◽  
Zhaoqi Wu ◽  
Shiang Xuanyuan ◽  
Hao Chang
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yan Liu ◽  
Wei Tang

In the theory of compressed sensing, restricted isometry property (RIP) decides the universality and reconstruction robustness of an observation matrix. At present, an observation matrix based on RD-AIC (RD-AIC-based observation matrix) can compress sparse continuous signals with a simple structure, but RIP analysis of this matrix is lack and challenging to prove. In this paper, this problem is relaxed. Instead, we demonstrate the incoherence analysis process, derive the orthogonality and nonsingularity of the matrix, propose the generalized relevance calculation steps of the matrix, and propose the hardware parameter design principles to improve the incoherence of the matrix. Moreover, compression and reconstruction experiments used in power quality disturbance signals are developed for testing the incoherence. The results show that the RD-AIC-based observation matrix has substantial incoherence under suitable hardware parameters, equivalent to the Gaussian random matrix and the Bernoulli random matrix.


2019 ◽  
Vol XVI (4) ◽  
pp. 95-113
Author(s):  
Muhammad Tariq ◽  
Tahir Mehmood

Accurate detection, classification and mitigation of power quality (PQ) distortive events are of utmost importance for electrical utilities and corporations. An integrated mechanism is proposed in this paper for the identification of PQ distortive events. The proposed features are extracted from the waveforms of the distortive events using modified form of Stockwell’s transform. The categories of the distortive events were determined based on these feature values by applying extreme learning machine as an intelligent classifier. The proposed methodology was tested under the influence of both the noisy and noiseless environments on a database of seven thousand five hundred simulated waveforms of distortive events which classify fifteen types of PQ events such as impulses, interruptions, sags and swells, notches, oscillatory transients, harmonics, and flickering as single stage events with their possible integrations. The results of the analysis indicated satisfactory performance of the proposed method in terms of accuracy in classifying the events in addition to its reduced sensitivity under various noisy environments.


2019 ◽  
Vol 16 (22) ◽  
pp. 20190401-20190401
Author(s):  
Jeonghwa Yoo ◽  
Sangho Choe

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1238
Author(s):  
Supanat Chamchuen ◽  
Apirat Siritaratiwat ◽  
Pradit Fuangfoo ◽  
Puripong Suthisopapan ◽  
Pirat Khunkitti

Power quality disturbance (PQD) is an important issue in electrical distribution systems that needs to be detected promptly and identified to prevent the degradation of system reliability. This work proposes a PQD classification using a novel algorithm, comprised of the artificial bee colony (ABC) and the particle swarm optimization (PSO) algorithms, called “adaptive ABC-PSO” as the feature selection algorithm. The proposed adaptive technique is applied to a combination of ABC and PSO algorithms, and then used as the feature selection algorithm. A discrete wavelet transform is used as the feature extraction method, and a probabilistic neural network is used as the classifier. We found that the highest classification accuracy (99.31%) could be achieved through nine optimally selected features out of all 72 extracted features. Moreover, the proposed PQD classification system demonstrated high performance in a noisy environment, as well as the real distribution system. When comparing the presented PQD classification system’s performance to previous studies, PQD classification accuracy using adaptive ABC-PSO as the optimal feature selection algorithm is considered to be at a high-range scale; therefore, the adaptive ABC-PSO algorithm can be used to classify the PQD in a practical electrical distribution system.


Sign in / Sign up

Export Citation Format

Share Document