Wearable haptic display by the use of a Particle Mechanical Constraint

Author(s):  
T. Mitsuda ◽  
S. Kuge ◽  
M. Wakabayashi ◽  
S. Kawamura
Actuators ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 60
Author(s):  
Eun-Hyuk Lee ◽  
Sang-Hoon Kim ◽  
Kwang-Seok Yun

Haptic displays have been developed to provide operators with rich tactile information using simple structures. In this study, a three-axis tactile actuator capable of thermal display was developed to deliver tactile senses more realistically and intuitively. The proposed haptic display uses pneumatic pressure to provide shear and normal tactile pressure through an inflation of the balloons inherent in the device. The device provides a lateral displacement of ±1.5 mm for shear haptic feedback and a vertical inflation of the balloon of up to 3.7 mm for normal haptic feedback. It is designed to deliver thermal feedback to the operator through the attachment of a heater to the finger stage of the device, in addition to mechanical haptic feedback. A custom-designed control module is employed to generate appropriate haptic feedback by computing signals from sensors or control computers. This control module has a manual gain control function to compensate for the force exerted on the device by the user’s fingers. Experimental results showed that it could improve the positional accuracy and linearity of the device and minimize hysteresis phenomena. The temperature of the device could be controlled by a pulse-width modulation signal from room temperature to 90 °C. Psychophysical experiments show that cognitive accuracy is affected by gain, and temperature is not significantly affected.


2021 ◽  
Vol 18 (3) ◽  
pp. 1-22
Author(s):  
Charlotte M. Reed ◽  
Hong Z. Tan ◽  
Yang Jiao ◽  
Zachary D. Perez ◽  
E. Courtenay Wilson

Stand-alone devices for tactile speech reception serve a need as communication aids for persons with profound sensory impairments as well as in applications such as human-computer interfaces and remote communication when the normal auditory and visual channels are compromised or overloaded. The current research is concerned with perceptual evaluations of a phoneme-based tactile speech communication device in which a unique tactile code was assigned to each of the 24 consonants and 15 vowels of English. The tactile phonemic display was conveyed through an array of 24 tactors that stimulated the dorsal and ventral surfaces of the forearm. Experiments examined the recognition of individual words as a function of the inter-phoneme interval (Study 1) and two-word phrases as a function of the inter-word interval (Study 2). Following an average training period of 4.3 hrs on phoneme and word recognition tasks, mean scores for the recognition of individual words in Study 1 ranged from 87.7% correct to 74.3% correct as the inter-phoneme interval decreased from 300 to 0 ms. In Study 2, following an average of 2.5 hours of training on the two-word phrase task, both words in the phrase were identified with an accuracy of 75% correct using an inter-word interval of 1 sec and an inter-phoneme interval of 150 ms. Effective transmission rates achieved on this task were estimated to be on the order of 30 to 35 words/min.


Author(s):  
Taku Tanichi ◽  
Futa Asada ◽  
Kento Matsuda ◽  
Danny Hynds ◽  
Kouta Minamizawa

IEEE Network ◽  
2021 ◽  
Vol 35 (1) ◽  
pp. 141-147
Author(s):  
Xiaosa Li ◽  
Zhiyong Yuan ◽  
Jianhui Zhao ◽  
Bo Du ◽  
Xiangyun Liao ◽  
...  
Keyword(s):  

Author(s):  
Jianfeng Wang ◽  
Qingjie Sun ◽  
Jiangkun Ma ◽  
Peng Jin ◽  
Tianzhu Sun ◽  
...  

It is a great challenge to improve the process stability in conventional underwater wet welding due to the formation of unstable bubble. In this study, mechanical constraint method was employed to interfere the bubble generated by underwater wet welding, and the new method was named as mechanical constraint assisted underwater wet welding. The aim of the study was to quantify the combined effect of wire feed speed and condition of mechanical constraint on the process stability in mechanical constraint assisted underwater wet welding. Experimental results demonstrated that the introduction of mechanical constraint not only suppressed the bubble without floating but also stabilized the arc burning process. The degree of influence of mechanical constraint, which changed with wire feed speed, played an important role during the mechanical constraint assisted underwater wet welding process. For all wire feed speeds, the fluctuations of welding electrical signal were decreased through introduction of mechanical constraint. The difference in the proportion of arc extinction process between underwater wet welding and mechanical constraint assisted underwater wet welding became less with increasing wire feed speed. At wire feed speed lower than 7.5 m/min, the improvement of process stability was very significant by mechanical constraint. However, the further improvement produced limited effect when the wire feed speed was greater than 7.5 m/min. The observation results showed that a better weld appearance was afforded at a large wire feed speed, corresponding to a lower variation coefficient.


Sign in / Sign up

Export Citation Format

Share Document