haptic displays
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 13)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Vol 6 (1) ◽  
pp. 1
Author(s):  
Hari Prasath Palani ◽  
Paul D. S. Fink ◽  
Nicholas A. Giudice

The ubiquity of multimodal smart devices affords new opportunities for eyes-free applications for conveying graphical information to both sighted and visually impaired users. Using previously established haptic design guidelines for generic rendering of graphical content on touchscreen interfaces, the current study evaluates the learning and mental representation of digital maps, representing a key real-world translational eyes-free application. Two experiments involving 12 blind participants and 16 sighted participants compared cognitive map development and test performance on a range of spatio-behavioral tasks across three information-matched learning-mode conditions: (1) our prototype vibro-audio map (VAM), (2) traditional hardcopy-tactile maps, and (3) visual maps. Results demonstrated that when perceptual parameters of the stimuli were matched between modalities during haptic and visual map learning, test performance was highly similar (functionally equivalent) between the learning modes and participant groups. These results suggest equivalent cognitive map formation between both blind and sighted users and between maps learned from different sensory inputs, providing compelling evidence supporting the development of amodal spatial representations in the brain. The practical implications of these results include empirical evidence supporting a growing interest in the efficacy of multisensory interfaces as a primary interaction style for people both with and without vision. Findings challenge the long-held assumption that blind people exhibit deficits on global spatial tasks compared to their sighted peers, with results also providing empirical support for the methodological use of sighted participants in studies pertaining to technologies primarily aimed at supporting blind users.


2021 ◽  
Vol 33 (5) ◽  
pp. 1075-1081
Author(s):  
Satoshi Saga ◽  
◽  
Naoto Ikeda

In recent years, it has become possible to experience sports in the virtual reality (VR) space. Although many haptic displays in the VR environment currently use vibrators as the mainstream, the vibrators’ presentation is not suitable to express ball-receiving in the VR sports experience. Therefore, we have developed a novel haptic display that reproduces an impulsive force by instantaneously applying traction to the palm using a string and wearable brake system. This paper proposes a method to present various reaction forces by dynamic control of the braking system and report the quantitative evaluation of the device’s physical and psychological usability.


2021 ◽  
Author(s):  
Brian H. Do ◽  
Allison M. Okamura ◽  
Katsu Yamane ◽  
Laura H. Blumenschein
Keyword(s):  

Actuators ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 60
Author(s):  
Eun-Hyuk Lee ◽  
Sang-Hoon Kim ◽  
Kwang-Seok Yun

Haptic displays have been developed to provide operators with rich tactile information using simple structures. In this study, a three-axis tactile actuator capable of thermal display was developed to deliver tactile senses more realistically and intuitively. The proposed haptic display uses pneumatic pressure to provide shear and normal tactile pressure through an inflation of the balloons inherent in the device. The device provides a lateral displacement of ±1.5 mm for shear haptic feedback and a vertical inflation of the balloon of up to 3.7 mm for normal haptic feedback. It is designed to deliver thermal feedback to the operator through the attachment of a heater to the finger stage of the device, in addition to mechanical haptic feedback. A custom-designed control module is employed to generate appropriate haptic feedback by computing signals from sensors or control computers. This control module has a manual gain control function to compensate for the force exerted on the device by the user’s fingers. Experimental results showed that it could improve the positional accuracy and linearity of the device and minimize hysteresis phenomena. The temperature of the device could be controlled by a pulse-width modulation signal from room temperature to 90 °C. Psychophysical experiments show that cognitive accuracy is affected by gain, and temperature is not significantly affected.


2021 ◽  
Vol 2 ◽  
Author(s):  
Marco Laghi ◽  
Manuel G. Catalano ◽  
Giorgio Grioli ◽  
Antonio Bicchi

Abstract Force feedback is often beneficial for robotic teleoperation, as it enhances the user’s remote perception. Over the years, many kinesthetic haptic displays (KHDs) have been proposed for this purpose, which have different types of interaction and feedback, depending on their kinematics and their interface with the operator, including, for example, grounded and wearable devices acting either at the joint or operational space (OS) level. Most KHDs in the literature are for the upper limb, with a majority acting at the shoulder/elbow level, and others focusing on hand movements. A minority exists which addresses wrist motions. In this paper, we present the Wearable Delta (W $ \Delta $ ), a proof-of-concept wearable wrist interface with hybrid parallel–serial kinematics acting in the OS, able to render a desired force directly to the hand involving just the forearm–hand subsystem. It has six degrees of freedom (DoFs), three of which are actuated, and is designed to reduce the obstruction of the range of the user’s wrist. Integrated with positions/inertial sensors at the elbow and upper arm, the W $ \Delta $ allows the remote control of a full articulated robotic arm. The paper covers the whole designing process, from the concept to the validation, as well as a multisubject experimental campaign that investigates its usability. Finally, it presents a section that, starting from the experimental results, aims to discuss and summarize the W $ \Delta $ advantages and limitations and look for possible future improvements and research directions.


2021 ◽  
pp. 1-1
Author(s):  
Victor Rodrigo Mercado ◽  
Maud Marchal ◽  
Anatole Lecuyer
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document