Correlation between wire feed speed and external mechanical constraint for enhanced process stability in underwater wet flux-cored arc welding

Author(s):  
Jianfeng Wang ◽  
Qingjie Sun ◽  
Jiangkun Ma ◽  
Peng Jin ◽  
Tianzhu Sun ◽  
...  

It is a great challenge to improve the process stability in conventional underwater wet welding due to the formation of unstable bubble. In this study, mechanical constraint method was employed to interfere the bubble generated by underwater wet welding, and the new method was named as mechanical constraint assisted underwater wet welding. The aim of the study was to quantify the combined effect of wire feed speed and condition of mechanical constraint on the process stability in mechanical constraint assisted underwater wet welding. Experimental results demonstrated that the introduction of mechanical constraint not only suppressed the bubble without floating but also stabilized the arc burning process. The degree of influence of mechanical constraint, which changed with wire feed speed, played an important role during the mechanical constraint assisted underwater wet welding process. For all wire feed speeds, the fluctuations of welding electrical signal were decreased through introduction of mechanical constraint. The difference in the proportion of arc extinction process between underwater wet welding and mechanical constraint assisted underwater wet welding became less with increasing wire feed speed. At wire feed speed lower than 7.5 m/min, the improvement of process stability was very significant by mechanical constraint. However, the further improvement produced limited effect when the wire feed speed was greater than 7.5 m/min. The observation results showed that a better weld appearance was afforded at a large wire feed speed, corresponding to a lower variation coefficient.

2019 ◽  
Vol 944 ◽  
pp. 581-592
Author(s):  
Dong Qi Lu ◽  
Li Cui ◽  
Hong Xi Chen ◽  
Yao Qing Chang ◽  
Zhi Bo Peng ◽  
...  

At present, the connection of steel/aluminum joints has been widely used in industrial fields such as aerospace, marine and automotive.Although the joints with excellent performance can be obtained by the solid phase welding methods such as explosion welding and friction welding, the production process is complicated and the efficiency is low, and the practical application is limited.Laser welding has attracted a lot of attention from researchers because of its advantages of high energy density, small welding deformation and fast welding speed.However, in the single-beam laser welding process, there are problems such as high joint assembly precision, excessive energy density, and easy formation of depressions in the weld.The newly developed laser-MIG (Metal Inert Gas) hybrid welding not only retains the advantages of laser welding, but also fully exploits the advantages of MIG welding, improves weld formation, improves the stability of the welding process, and helps solve the single-beam laser welding problems.In this paper, the laser deep penetration welding process of 5.5 mm thick E36 steel and 6 mm thick 5083 aluminum alloy butt joint was studied by laser-MIG composite welding heat source. Compared with the single laser welding process, the influence of wire feed speed on the welded steel/aluminum joint, joint interface structure and joint mechanical properties was studied.The results show that the laser-MIG composite deep-melt welding can obtain good steel/aluminum butt joint performance. At a laser power of 3.25 kW, a wire feed speed of 1.5 m / min, a laser offset of 0.5 mm and a defocus of 0 mm, the tensile strength of the steel/aluminum butt joint is as high as 85.0 MPa.Laser-MIG hybrid welding can improve the dent defects of a single laser welded steel/aluminum butt joint. The amount of acicular Fe4Al13 phase in the intermetallic compound was significantly reduced, and the resistance of the steel/aluminum joint was increased from 8.6 kN to 12.7 kN.


2021 ◽  
Vol 877 ◽  
pp. 73-79
Author(s):  
Pattarawadee Poolperm ◽  
Wasawat Nakkiew ◽  
Nirut Naksuk

The purpose of this study is to investigate the forming characteristics of single-pass Metal Inert Gas (MIG) welding wire for multi-layer additive manufacturing parts. Influences of arc current, arc voltage, arc distances, welding speed, wire feed speed, temperatures and heat input on layer formation were analyzed. The deposition of material by MIG process is controlled by a robot (ABB) controller for constructing walls of rectangular box shape. The samples were measured with a microhardness testing and tensile testing onto the welded bead created by the additive manufacturing technique. It was found that the mechanical properties of microhardness values are between 151.70 to 155.80 HV and the tensile strength values are between 472.71 to 491.12 MPa according to transverse and longitudinal sections of the specimens.


2018 ◽  
Vol 34 ◽  
pp. 238-250 ◽  
Author(s):  
Jianfeng Wang ◽  
Qingjie Sun ◽  
Yunlu Jiang ◽  
Tao Zhang ◽  
Jiangkun Ma ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1249
Author(s):  
Maofu Zhang ◽  
Yanfei Han ◽  
Chuanbao Jia ◽  
Shengfa Dong ◽  
Sergii Maksimov ◽  
...  

In underwater wet welding, the unstable welding process caused by the generation and rupture of bubbles and the chilling effect of water on the welding area result in low quality of welded joints, which makes it difficult to meet the practical application of marine engineering. To improve the process stability and joining quality, a mixture of welding flux with a water glass or epoxy resin was placed on the welding zone before underwater welding. In this paper, welds’ appearance, geometry statistics of welds’ formation, welding process stability, slag structure, microstructure, pores and mechanical properties were investigated. It was found that with the addition of water glass in the mixture, the penetration of weld was effectively increased, and the frequency of arc extinction was reduced. Though the porosity rose to a relatively high level, the joints’ comprehensive mechanical properties were not significantly improved. Notably, the applied epoxy resin completely isolated the surrounding water from the welding area, which greatly improved process stability. Furthermore, it benefited from the microstructure filled with massive acicular ferrite, the average elongation and room temperature impact toughness increased by 178.4%, and 69.1% compared with underwater wet welding, respectively, and the bending angle of the joint reaches to 180°.


2012 ◽  
Vol 214 ◽  
pp. 700-704
Author(s):  
Jin Hu Song

In this paper, a scheme for the structure and controlling design of an all-position automatic welding machine is studied, and also the automatic welding systemis explored in depth. In this system, the C8051F020 single chip is used as the controller and the DC servo-motor as the executive component. Through the interface circuit and software program of the single chip, the system can control and harmonize the wire-feed speed as well as the tread and swing of the welding tractor, and can meet the needs of the all-position welding technology, hence realizing the automation of welding, and increasing the welding production efficiency.


2019 ◽  
Vol 3 (2) ◽  
pp. 32 ◽  
Author(s):  
Yuri Yehorov ◽  
Leandro João da Silva ◽  
Américo Scotti

The purpose of the study was to propose a strategy to assess the potential reduction of the production cost during wire+arc additive manufacturing (WAAM) based on the combination of wire feed speed (related to deposition rate) and travel speed (related to deposition time). A series of experiments, using a multilayer-non-oscillated single pass wall made of an Al-Mg alloy, was conducted. The quality of the wall was assessed through the lateral surface waviness and top layer undulation. The concepts of Surface Waviness and Buy-to-Apply indices were introduced. Initially, the range of travel speed (TS) that provided layers with acceptable quality was determined for a given wire feed speed (WFS), corresponding to a constant current. Then, the effect of the increase of production capacity of the process (though current raising, yet maintaining the ratio WFS/TS constant) on the wall quality for a given condition within the TS range was assessed. The results showed that the useful range of TS prevents too rough a waving surface below the lower limit and top surface undulation over the higher limit. However, inside the range, there is little quality variation for the case under study. Finally, simulations of deposition time were developed to demonstrate the weight of the TS on the final deposition time and wall quality as a function of a target wall width. This respective weight showed the existence of a complex and unpredictable, yet determined, power of a combination of TS, target wall geometry, and dead time between subsequent layers. It was verified to be possible to find optimized TS as a function of different target geometries.


2012 ◽  
Vol 17 (3) ◽  
pp. 192-200 ◽  
Author(s):  
Sadek Crisóstomo Absi Alfaro

The classical inspection methods used for detecting and finding disturbances in welding process are based on direct measurement of its parameters as arc voltage, welding current, wire feed speed, etc. Using these inspection methods implies sensors insertion around the welding process and its presence could alter the metallic transference behavior and consequently an uneven quality as well as it can increase the production cost. For reducing these implications is necessary using a non intrusive inspection method. In this paper we will show nonintrusive methods to the weld quality inspection. These methods are based on sensor fusion, the extraction of global information coming from the interrelation data given by each sensor that, for example, sensing the spectroscopy radiation emission, the acoustic sensing of the electrical arc, the infrared emissions indicating the heat content of the weld. Finally, the fusion data will be applied to a statistical control for detecting and finding welding disturbances. The results will show that sensor fusion could be used as a tool to measure indirectly the weld quality in the GMAW process.


2014 ◽  
Vol 494-495 ◽  
pp. 1358-1363
Author(s):  
Xiu Mei Wu ◽  
Li Min Sha ◽  
Tao Zi Si ◽  
Lei Jiang

In the modern welding technology of metal materials, the welding robot is a very important factor. And the welding wire feeding device is a very important part of the welding robot. The welding wire feed systems stabilization and reliability is essential for the welding quality. The resistance is caused by the draw of welding wire and other factors, which is highly nonlinear and stochastic. The wire feed rate and welding quality will be severely affected by the resistance. This paper investigates the method controlling the system according to the observations of the resistance, speed and other factors. There are the complex environmental factors in the welding process, such as the strong magnetic field and high current field, which are random. So the robust control algorithm based on the state space model is designed to keep the welding wire feed speed stable under disturbances. The robust control method can improve the speed of response and eliminate the effect of wire feed resistance to the wire feed speed. Even when disturbed, the system can quickly reach a stable wire feed speed.


Sign in / Sign up

Export Citation Format

Share Document