Multivariate time-series classification of sleep patterns using a hybrid deep learning architecture

Author(s):  
Jeonghan Hong ◽  
Junho Yoon
2020 ◽  
Vol 34 (04) ◽  
pp. 6845-6852 ◽  
Author(s):  
Xuchao Zhang ◽  
Yifeng Gao ◽  
Jessica Lin ◽  
Chang-Tien Lu

With the advance of sensor technologies, the Multivariate Time Series classification (MTSC) problem, perhaps one of the most essential problems in the time series data mining domain, has continuously received a significant amount of attention in recent decades. Traditional time series classification approaches based on Bag-of-Patterns or Time Series Shapelet have difficulty dealing with the huge amounts of feature candidates generated in high-dimensional multivariate data but have promising performance even when the training set is small. In contrast, deep learning based methods can learn low-dimensional features efficiently but suffer from a shortage of labelled data. In this paper, we propose a novel MTSC model with an attentional prototype network to take the strengths of both traditional and deep learning based approaches. Specifically, we design a random group permutation method combined with multi-layer convolutional networks to learn the low-dimensional features from multivariate time series data. To handle the issue of limited training labels, we propose a novel attentional prototype network to train the feature representation based on their distance to class prototypes with inadequate data labels. In addition, we extend our model into its semi-supervised setting by utilizing the unlabeled data. Extensive experiments on 18 datasets in a public UEA Multivariate time series archive with eight state-of-the-art baseline methods exhibit the effectiveness of the proposed model.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 212247-212257
Author(s):  
Xu Cheng ◽  
Peihua Han ◽  
Guoyuan Li ◽  
Shengyong Chen ◽  
Houxiang Zhang

Author(s):  
Hossein Ebrahimidinaki ◽  
Shervin Shirmohammadi ◽  
Emil Janulewicz ◽  
David Cote

Sign in / Sign up

Export Citation Format

Share Document