End-to-end multivariate time series classification via hybrid deep learning architectures

Author(s):  
Mehak Khan ◽  
Hongzhi Wang ◽  
Alladoumbaye Ngueilbaye ◽  
Aya Elfatyany
2020 ◽  
Vol 34 (04) ◽  
pp. 6845-6852 ◽  
Author(s):  
Xuchao Zhang ◽  
Yifeng Gao ◽  
Jessica Lin ◽  
Chang-Tien Lu

With the advance of sensor technologies, the Multivariate Time Series classification (MTSC) problem, perhaps one of the most essential problems in the time series data mining domain, has continuously received a significant amount of attention in recent decades. Traditional time series classification approaches based on Bag-of-Patterns or Time Series Shapelet have difficulty dealing with the huge amounts of feature candidates generated in high-dimensional multivariate data but have promising performance even when the training set is small. In contrast, deep learning based methods can learn low-dimensional features efficiently but suffer from a shortage of labelled data. In this paper, we propose a novel MTSC model with an attentional prototype network to take the strengths of both traditional and deep learning based approaches. Specifically, we design a random group permutation method combined with multi-layer convolutional networks to learn the low-dimensional features from multivariate time series data. To handle the issue of limited training labels, we propose a novel attentional prototype network to train the feature representation based on their distance to class prototypes with inadequate data labels. In addition, we extend our model into its semi-supervised setting by utilizing the unlabeled data. Extensive experiments on 18 datasets in a public UEA Multivariate time series archive with eight state-of-the-art baseline methods exhibit the effectiveness of the proposed model.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 212247-212257
Author(s):  
Xu Cheng ◽  
Peihua Han ◽  
Guoyuan Li ◽  
Shengyong Chen ◽  
Houxiang Zhang

Author(s):  
Hossein Ebrahimidinaki ◽  
Shervin Shirmohammadi ◽  
Emil Janulewicz ◽  
David Cote

2021 ◽  
Vol 13 (3) ◽  
pp. 67
Author(s):  
Eric Hitimana ◽  
Gaurav Bajpai ◽  
Richard Musabe ◽  
Louis Sibomana ◽  
Jayavel Kayalvizhi

Many countries worldwide face challenges in controlling building incidence prevention measures for fire disasters. The most critical issues are the localization, identification, detection of the room occupant. Internet of Things (IoT) along with machine learning proved the increase of the smartness of the building by providing real-time data acquisition using sensors and actuators for prediction mechanisms. This paper proposes the implementation of an IoT framework to capture indoor environmental parameters for occupancy multivariate time-series data. The application of the Long Short Term Memory (LSTM) Deep Learning algorithm is used to infer the knowledge of the presence of human beings. An experiment is conducted in an office room using multivariate time-series as predictors in the regression forecasting problem. The results obtained demonstrate that with the developed system it is possible to obtain, process, and store environmental information. The information collected was applied to the LSTM algorithm and compared with other machine learning algorithms. The compared algorithms are Support Vector Machine, Naïve Bayes Network, and Multilayer Perceptron Feed-Forward Network. The outcomes based on the parametric calibrations demonstrate that LSTM performs better in the context of the proposed application.


Sign in / Sign up

Export Citation Format

Share Document