Beam steering in HMSIW LWA at fixed millimeter wave frequency

Author(s):  
Syed Muhammad Ammar Ali ◽  
Zubair Ahmed ◽  
Mojeeb Bin Ihsan
2018 ◽  
Vol 7 (2.7) ◽  
pp. 532 ◽  
Author(s):  
R Siri Chandana ◽  
P Sai Deepthi ◽  
D Sriram Teja ◽  
N Veera JayaKrishna ◽  
M Sujatha

This article is about a single band microstrip patch antenna used for the 5G applications. And this antenna is suitable for the millimeter wave frequency. The patch antenna design consists of 2 E shaped slots and 1 H shaped slot. These slots are loaded on the radiating patch with the 50 ohms microstrip feed line. For the simulation purpose, Rogers’s RT5880 dielectric substrate with relative permittivity of 2.2 and loss tangent of 0.0009 is used. The design and simulation of the antenna is done using HFSS (High Frequency Structure Simulator) software. The results are simulated for the parameters Return loss, VSWR, 3D Radiation pattern. The proposed antenna has a return loss of -42.4383 at 59 GHz millimeter wave frequency. 


Crystals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 355 ◽  
Author(s):  
Holger Maune ◽  
Matthias Jost ◽  
Roland Reese ◽  
Ersin Polat ◽  
Matthias Nickel ◽  
...  

Tunable Liquid Crystal (LC)-based microwave components are of increasing interest in academia and industry. Based on these components, numerous applications can be targeted such as tunable microwave filters and beam-steering antenna systems. With the commercialization of first LC-steered antennas for Ku-band e.g., by Kymeta and Alcan Systems, LC-based microwave components left early research stages behind. With the introduction of terrestrial 5G communications systems, moving to millimeter-wave communication, these systems can benefit from the unique properties of LC in terms of material quality. In this paper, we show recent developments in millimeter wave phase shifters for antenna arrays. The limits of classical high-performance metallic rectangular waveguides are clearly identified. A new implementation with dielectric waveguides is presented and compared to classic approaches.


Sign in / Sign up

Export Citation Format

Share Document