Mathematical modeling in selected biological systems with fractional Brownian motion

Author(s):  
Daria V. Filatova ◽  
Marek Grzywaczewski
2003 ◽  
Vol 11 (02) ◽  
pp. 113-137 ◽  
Author(s):  
GUY JUMARIE

In the present paper, a modeling in the complex space is combined with complex-valued fractional Brownian motion to get some new results in biological systems. The rational of this approach is as follows. Biological dynamics which evolve continuously in time but are not time differentiable, necessarily exhibit random properties. These random features appear also as a result of the randomness of the proper time of biological systems. Usually, this is taken into account by using white noises that is to say fractals of order two. Fractals of order n larger than two are more suitable for increments with large amplitudes, and they may be introduced by using either real-valued fractal noises with long range memory or Brownian motions with independent increments, which are necessarily complex-valued. In the later case, we are then led to describe biological systems in the complex plane. After some background on the complex-valued fractional Brownian motion, we shall deal successively with population growth, information thermodynamics of order n, nonequilibrium phase transition via fractal noises and complexity of Markovian processes via the concept of informational divergence.


2014 ◽  
Vol 51 (1) ◽  
pp. 1-18 ◽  
Author(s):  
Dawei Hong ◽  
Shushuang Man ◽  
Jean-Camille Birget ◽  
Desmond S. Lun

We construct a wavelet-based almost-sure uniform approximation of fractional Brownian motion (FBM) (Bt(H))_t∈[0,1] of Hurst index H ∈ (0, 1). Our results show that, by Haar wavelets which merely have one vanishing moment, an almost-sure uniform expansion of FBM for H ∈ (0, 1) can be established. The convergence rate of our approximation is derived. We also describe a parallel algorithm that generates sample paths of an FBM efficiently.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
A. Bakka ◽  
S. Hajji ◽  
D. Kiouach

Abstract By means of the Banach fixed point principle, we establish some sufficient conditions ensuring the existence of the global attracting sets of neutral stochastic functional integrodifferential equations with finite delay driven by a fractional Brownian motion (fBm) with Hurst parameter H ∈ ( 1 2 , 1 ) {H\in(\frac{1}{2},1)} in a Hilbert space.


Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 246
Author(s):  
Manuel Molina-Fernández ◽  
Manuel Mota-Medina

This research work deals with mathematical modeling in complex biological systems in which several types of individuals coexist in various populations. Migratory phenomena among the populations are allowed. We propose a class of mathematical models to describe the demographic dynamics of these type of complex systems. The probability model is defined through a sequence of random matrices in which rows and columns represent the various populations and the several types of individuals, respectively. We prove that this stochastic sequence can be studied under the general setting provided by the multitype branching process theory. Probabilistic properties and limiting results are then established. As application, we present an illustrative example about the population dynamics of biological systems formed by long-lived raptor colonies.


Author(s):  
Xia Zhou ◽  
Dongpeng Zhou ◽  
Shouming Zhong

Abstract This paper consider the existence, uniqueness and exponential stability in the pth moment of mild solution for impulsive neutral stochastic integro-differential equations driven simultaneously by fractional Brownian motion and by standard Brownian motion. Based on semigroup theory, the sufficient conditions to ensure the existence and uniqueness of mild solutions are obtained in terms of fractional power of operators and Banach fixed point theorem. Moreover, the pth moment exponential stability conditions of the equation are obtained by means of an impulsive integral inequality. Finally, an example is presented to illustrate the effectiveness of the obtained results.


Sign in / Sign up

Export Citation Format

Share Document