Whole body imitation of human motion with humanoid robot via ZMP stability criterion

Author(s):  
Deok-Won Lee ◽  
Min-Jae Lee ◽  
Mun-Sang Kim
2013 ◽  
Vol 479-480 ◽  
pp. 617-621
Author(s):  
Hsien I Lin ◽  
Zan Sheng Chen

Human-to-Humanoid motion imitation is an intuitive method to teach a humanoid robot how to act by human demonstration. For example, teaching a robot how to stand is simply showing the robot how a human stands. Much of previous work in motion imitation focuses on either upper-body or lower-body motion imitation. In this paper, we propose a novel approach to imitate human whole-body motion by a humanoid robot. The main problem of the proposed work is how to control robot balance and keep the robot motion as similar as taught human motion simultaneously. Thus, we propose a balance criterion to assess how well the root can balance and use the criterion and a genetic algorithm to search a sub-optimal solution, making the root balanced and its motion similar to human motion. We have validated the proposed work on an Aldebaran Robotics NAO robot with 25 degrees of freedom. The experimental results show that the root can imitate human postures and autonomously keep itself balanced.


Author(s):  
Christian Mandery ◽  
Omer Terlemez ◽  
Martin Do ◽  
Nikolaus Vahrenkamp ◽  
Tamim Asfour
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document