Low Voltage Ride-Through of Doubly Fed Induction Generator based Wind Energy Conversion System incorporating Step Resistive Fault Current Limiter

Author(s):  
Subhendu Sekhar Sahoo ◽  
Ankit Garg ◽  
P. M Tripathi ◽  
Kalyan Chatterjee
2021 ◽  
Vol 13 (12) ◽  
pp. 6656
Author(s):  
A. Padmaja ◽  
Allusivala Shanmukh ◽  
Siva Subrahmanyam Mendu ◽  
Ramesh Devarapalli ◽  
Javier Serrano González ◽  
...  

The increase in penetration of wind farms operating with doubly fed induction generators (DFIG) results in stability issues such as voltage dips and high short circuit currents in the case of faults. To overcome these issues, and to achieve reliable and sustainable power from an uncertain wind source, fault current limiters (FCL) are incorporated. This work focuses on limiting the short circuit current level and fulfilling the reactive power compensation of a DFIG wind farm using a capacitive bridge fault current limiter (CBFCL). To deliver sustainable wind power to the grid, a fuzzy-based CBFCL is designed for generating optimal reactive power to suppress the instantaneous voltage drop during the fault and in the recovery state. The performance of the proposed fuzzy-based CBFCL is presented under a fault condition to account for real-time conditions. The results show that the proposed fuzzy-based CBFCL offers a more effective solution for overcoming the low voltage ride through (LVRT) problem than a traditional controller.


Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2364
Author(s):  
Jiejie Huang ◽  
Shun Sang ◽  
Lei Zhang ◽  
Xiaocen Xue ◽  
Tingting Sun

A fault current limiter (FCL) may be applied to assist the low-voltage ride-through (LVRT) of a doubly fed induction generator (DFIG). FCLs with fixed impedance, lack the flexibility to adjust their impedance to adapt to different LVRT scenarios. The direct switch-in and -out of the fixed-impedance FCL yields transient electromagnetic oscillations in the DFIG, which need to be addressed. In this paper, a variable-impedance FCL is implemented at the stator side of the DFIG to assist its LVRT, and a novel methodology is proposed to control the impedance of the FCL, with which the stator current oscillation is effectively constrained and the smooth switch-out of the FCL is realized to avoid continued active power consumption of the FCL and to restore the DFIG to its pre-fault working condition. Analysis of the LVRT transient is carried out, which lays the foundation for the control methodology to determine the impedance of the FCL based on calculation of the optimization goal. The feasibility and effectiveness of the control to the variable-impedance FCL are verified by the numerical analysis results, which compare the LVRT simulation results with the application of the fixed-impedance and the variable-impedance FCLs.


Sign in / Sign up

Export Citation Format

Share Document