Brain Computing Interface based Auto Calling Using Eye Blink Detection Algorithm

Author(s):  
Sree Haran A ◽  
Siyam Adit G ◽  
Vignesh N ◽  
Vimal Athitha S G ◽  
Subash Sakthivel S ◽  
...  
Author(s):  
Dang-Khoa Tran ◽  
Thanh-Hai Nguyen ◽  
Thanh-Nghia Nguyen

In the electroencephalography (EEG) study, eye blinks are a commonly known type of ocular artifact that appears most frequently in any EEG measurement. The artifact can be seen as spiking electrical potentials in which their time-frequency properties are varied across individuals. Their presence can negatively impact various medical or scientific research or be helpful when applying to brain-computer interface applications. Hence, detecting eye-blink signals is beneficial for determining the correlation between the human brain and eye movement in this paper. The paper presents a simple, fast, and automated eye-blink detection algorithm that did not require user training before algorithm execution. EEG signals were smoothed and filtered before eye-blink detection. We conducted experiments with ten volunteers and collected three different eye-blink datasets over three trials using Emotiv EPOC+ headset. The proposed method performed consistently and successfully detected spiking activities of eye blinks with a mean accuracy of over 96%.


Author(s):  
RICHA MEHTA ◽  
MANISH SHRIVASTAVA

Eye blinking is a physiological necessity for humans. This method automatically locates the user’s eye by detecting eye blinks. A system is the improvement of driver carefulness and accident reduction. The driver’s face is tracked while he is driving and he is warned if there seems to be an alerting fact that can result in an accident such as sleepy eyes, or looking out of the road. Furthermore, with a facial feature tracker, it becomes possible to play a synthesized avatar so that it imitates the expressions of the performer. For a user who is incapable of using her hands, a facial expression controller may be a solution to send limited commands to a computer. Eye blinking is one of the prominent areas to solve many real world problems. The process of blink detection consists of two phases. These are eye tracking followed by detection of blink. The work that has been carried out for eye tracking only is not suitable for eye blink detection. Therefore some approaches had been proposed for eye tracking along with eyes blink detection. In this thesis, real time implementation is done to count number of eye blinks in an image sequence. At last after analyzing all these approaches some of the parameters we obtained on which better performance of eye blink detection algorithm depend. This project focuses on automatic eye blink detection in real time. The aim of this thesis is to count the number of eye blinks in a video. This project will be performed on a video database of the facial expressions.


Author(s):  
Mohamed Hedi Baccour ◽  
Frauke Driewer ◽  
Enkelejda Kasneci ◽  
Wolfgang Rosenstiel

Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4895
Author(s):  
Thanh-Vinh Nguyen ◽  
Masaaki Ichiki

This paper reports on a mask-type sensor for simultaneous pulse wave and respiration measurements and eye blink detection that uses only one sensing element. In the proposed sensor, a flexible air bag-shaped chamber whose inner pressure change can be measured by a microelectromechanical system-based piezoresistive cantilever was used as the sensing element. The air bag-shaped chamber is fabricated by wrapping a sponge pad with plastic film and polyimide tape. The polyimide tape has a hole to which the substrate with the piezoresistive cantilever adheres. By attaching the sensor device to a mask where it contacts the nose of the subject, the sensor can detect the pulses and eye blinks of the subject by detecting the vibration and displacement of the nose skin caused by these physiological parameters. Moreover, the respiration of the subject causes pressure changes in the space between the mask and the face of the subject as well as slight vibrations of the mask. Therefore, information about the respiration of the subject can be extracted from the sensor signal using either the low-frequency component (<1 Hz) or the high-frequency component (>100 Hz). This paper describes the sensor fabrication and provides demonstrations of the pulse wave and respiration measurements as well as eye blink detection using the fabricated sensor.


2021 ◽  
pp. 116073
Author(s):  
Paulo Augusto de Lima Medeiros ◽  
Gabriel Vinícius Souza da Silva ◽  
Felipe Ricardo dos Santos Fernandes ◽  
Ignacio Sánchez-Gendriz ◽  
Hertz Wilton Castro Lins ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document