hand model
Recently Published Documents


TOTAL DOCUMENTS

229
(FIVE YEARS 67)

H-INDEX

16
(FIVE YEARS 2)

2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Yuliya Shapovalova ◽  
Tom Heskes ◽  
Tjeerd Dijkstra

Abstract Background Understanding the synergetic and antagonistic effects of combinations of drugs and toxins is vital for many applications, including treatment of multifactorial diseases and ecotoxicological monitoring. Synergy is usually assessed by comparing the response of drug combinations to a predicted non-interactive response from reference (null) models. Possible choices of null models are Loewe additivity, Bliss independence and the recently rediscovered Hand model. A different approach is taken by the MuSyC model, which directly fits a generalization of the Hill model to the data. All of these models, however, fit the dose–response relationship with a parametric model. Results We propose the Hand-GP model, a non-parametric model based on the combination of the Hand model with Gaussian processes. We introduce a new logarithmic squared exponential kernel for the Gaussian process which captures the logarithmic dependence of response on dose. From the monotherapeutic response and the Hand principle, we construct a null reference response and synergy is assessed from the difference between this null reference and the Gaussian process fitted response. Statistical significance of the difference is assessed from the confidence intervals of the Gaussian process fits. We evaluate performance of our model on a simulated data set from Greco, two simulated data sets of our own design and two benchmark data sets from Chou and Talalay. We compare the Hand-GP model to standard synergy models and show that our model performs better on these data sets. We also compare our model to the MuSyC model as an example of a recent method on these five data sets and on two-drug combination screens: Mott et al. anti-malarial screen and O’Neil et al. anti-cancer screen. We identify cases in which the HandGP model is preferred and cases in which the MuSyC model is preferred. Conclusion The Hand-GP model is a flexible model to capture synergy. Its non-parametric and probabilistic nature allows it to model a wide variety of response patterns.


2021 ◽  
Vol 11 (23) ◽  
pp. 11568
Author(s):  
Maria Skublewska-Paszkowska ◽  
Pawel Powroznik ◽  
Jakub Smolka ◽  
Marek Milosz ◽  
Edyta Lukasik ◽  
...  

Traditional dance is one of the key elements of Intangible Culture Heritage (ICH). Many scientific papers concern analysis of dance sequences, classification and recognition of movements, making ICH data public, creating and visualising 3D models or software solutions for learning folklore dances. These works make it possible to preserve this disappearing art. The aim of this article is to propose a methodology for scanning folklore dances. The methodology was developed on the basis of capturing 3D data via an optical motion capture system with a full body Plug-in Gait model that allows for kinematic and kinetic analysis of motion sequences. An additional element of this research was the development of a hand model with which it is possible to precisely analyse the fingers, which play a significant role in many dances. The present methodology was verified on the basis of the Lazgi dance, included in the UNESCO ICH list. The obtained results of movement biomechanics for the dance sequence and the angles of the fingers indicate that it is universal and can be applied to dances that involve the upper and lower body parts, including hand movements.


2021 ◽  
Vol 6 (4) ◽  
pp. 552-564
Author(s):  
Lita Patricia Lunanta ◽  
Reneta Kristiani ◽  
Aurelia Ardani

In the era of the COVID-19 pandemic, learning from home comes with positive and negative consequences. The sense of security that children get from distance learning brings negative consequences where children need to adjust to a new paradigm. Problems around learning from home included mental health and emotional problems for students. This psychoeducation aimed to explain the emotion regulation process and how the brain worked in emotion processing. We conducted the program with a pre-survey and interviews with teachers and school principals. Furthermore, online mentoring and surveys to students accompanied by their parents. It is hoped that students could understand their emotions and the basic steps to regulate. The hand model of the brain is the model of the brain in hands to explain concretely the hierarchy and connection between different parts of the brain concerning emotions. This program got a positive response from the participants. Psychoeducation results show an increase in understanding and gave positive feedback that this program is effective and fit to what they needed.


2021 ◽  
Vol 85 ◽  
pp. 103186
Author(s):  
Gregor Harih ◽  
Miloš Kalc ◽  
Matjaž Vogrin ◽  
Marion Fodor-Mühldorfer

2021 ◽  
Vol 7 ◽  
pp. e663
Author(s):  
Yaroslav Smirnov ◽  
Denys Smirnov ◽  
Anton Popov ◽  
Sergiy Yakovenko

Deep learning is a relatively new computational technique for the description of the musculoskeletal dynamics. The experimental relationships of muscle geometry in different postures are the high-dimensional spatial transformations that can be approximated by relatively simple functions, which opens the opportunity for machine learning (ML) applications. In this study, we challenged general ML algorithms with the problem of approximating the posture-dependent moment arm and muscle length relationships of the human arm and hand muscles. We used two types of algorithms, light gradient boosting machine (LGB) and fully connected artificial neural network (ANN) solving the wrapping kinematics of 33 muscles spanning up to six degrees of freedom (DOF) each for the arm and hand model with 18 DOFs. The input-output training and testing datasets, where joint angles were the input and the muscle length and moment arms were the output, were generated by our previous phenomenological model based on the autogenerated polynomial structures. Both models achieved a similar level of errors: ANN model errors were 0.08 ± 0.05% for muscle lengths and 0.53 ± 0.29% for moment arms, and LGB model made similar errors—0.18 ± 0.06% and 0.13 ± 0.07%, respectively. LGB model reached the training goal with only 103 samples, while ANN required 106 samples; however, LGB models were about 39 times slower than ANN models in the evaluation. The sufficient performance of developed models demonstrates the future applicability of ML for musculoskeletal transformations in a variety of applications, such as in advanced powered prosthetics.


Author(s):  
Maximilian Melzner ◽  
Lucas Engelhardt ◽  
Ulrich Simon ◽  
Sebastian Dendorfer

Abstract Regarding the prevention of injuries and rehabilitation of the human hand, musculoskeletal simulations using an inverse dynamics approach allow for insights of the muscle recruitment and thus acting forces on the hand. Currently, several hand models from various research groups are in use, which are mainly validated by the comparison of numerical and anatomical moment arms. In contrast to this validation and model-building technique by cadaver studies, the aim of the present study is to further validate a recently published hand model [1] by analyzing numerically calculated muscle activities in comparison to experimentally measured electromyographical signals of the muscles. Therefore, the electromyographical signals of 10 hand muscles of five test subjects performing seven different hand movements were measured. The kinematics of these tasks were used as input for the hand model, and the numerical muscle activities were computed. To analyze the relationship between simulated and measured activities, the time difference of the muscle on- and off-set points were calculated, which resulted in a mean on- and off-set time difference of 0.58 s between the experimental data and the model. The largest differences were detected for movements that mainly addressed the wrist. One major issue comparing simulated and measured muscle activities of the hand is cross-talk. Nevertheless, the results show that the hand model fits the experiment quite accurately despite some limitations and is a further step towards patient-specific modelling of the upper extremity.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
H. M. K. K. M. B. Herath ◽  
W.R. de Mel

More than one billion people face disabilities worldwide, according to the World Health Organization (WHO). In Sri Lanka, there are thousands of people suffering from a variety of disabilities, especially hand disabilities, due to the civil war in the country. The Ministry of Health of Sri Lanka reports that by 2025, the number of people with disabilities in Sri Lanka will grow by 24.2%. In the field of robotics, new technologies for handicapped people are now being built to make their lives simple and effective. The aim of this research is to develop a 3-finger anatomical robot hand model for handicapped people and control (flexion and extension) the robot hand using motor imagery. Eight EEG electrodes were used to extract EEG signals from the primary motor cortex. Data collection and testing were performed for a period of 42 s timespan. According to the test results, eight EEG electrodes were sufficient to acquire the motor imagery for flexion and extension of finger movements. The overall accuracy of the experiments was found at 89.34% (mean = 22.32) at the 0.894 precision. We also observed that the proposed design provided promising results for the performance of the task (grab, hold, and release activities) of hand-disabled persons.


2021 ◽  
Author(s):  
Blair William Gerald Scriven ◽  
Heather McGrath ◽  
Emmanuel Stefanakis

AbstractA timely and cost-effective method of creating inundation maps could assist first responders in allocating resources and personnel in the event of a flood or in preparation of a future disaster. The Height Above Nearest Drainage (HAND) model could be implemented into an on-the-fly flood mapping application for a Canada-wide service. The HAND model requires water level (m) data inputs while many sources of hydrological data in Canada only provide discharge (m3/sec) data. Synthetic rating curves (SRCs), created using river geometry/characteristics and the Manning’s formula, could be utilized to provide an approximate water level given a discharge input. A challenge with creating SRCs includes representing how multiple different land covers will slow impact flow due to texture and bulky features (i.e., smooth asphalt versus rocky river channel); this relates to the roughness coefficient (n). In our study, two methods of representing multiple n values were experimented with (a weighted method and a minimum-median method) and were compared to using a fixed n method. A custom ArcGIS tool, Canadian Estimator of Ratings Curves using HAND and Discharge (CERC-HAND-D), was developed to create SRCs using all three methods. Control data were sourced from gauge stations across Canada in the form of rating curves. Results indicate that in areas with medium to medium–high river gradients (S > 0.002 m/m) or with river reaches under 5 km, the CERC-HAND-D tool creates more accurate SRCs (NRMSE = 3.7–8.8%, Percent Bias = −7.8%—9.4%), with the minimum-median method being the preferred n method.


2021 ◽  
Vol 11 (11) ◽  
pp. 4746
Author(s):  
Ahmad AlAttar ◽  
Francesco Cursi ◽  
Petar Kormushev

Robots have been predominantly controlled using conventional control methods that require prior knowledge of the robots’ kinematic and dynamic models. These controllers can be challenging to tune and cannot directly adapt to changes in kinematic structure or dynamic properties. On the other hand, model-learning controllers can overcome such challenges. Our recently proposed model-learning orientation controller has shown promising ability to simultaneously control a three-degrees-of-freedom robot manipulator’s end-effector pose. However, this controller does not perform optimally with robots of higher degrees-of-freedom nor does it resolve redundancies. The research presented in this paper extends the state-of-the-art kinematic-model-free controller to perform pose control of hyper-redundant robot manipulators and resolve redundancies by tracking and controlling multiple points along the robot’s serial chain. The results show that with more control points, the controller is able to reach desired poses in fewer steps, yielding an improvement of up to 66%, and capable of achieving complex configurations. The algorithm was validated by running the simulation 100 times, and it was found that, in 82% of the times, the robot successfully reached the desired target pose within 150 steps.


Sign in / Sign up

Export Citation Format

Share Document