Butterfly Species Identification Using Convolutional Neural Network (CNN)

Author(s):  
Nur Nabila Kamaron Arzar ◽  
Nurbaity Sabri ◽  
Nur Farahin Mohd Johari ◽  
Anis Amilah Shari ◽  
Mohd Rahmat Mohd Noordin ◽  
...  

Underwater imagery and analysis plays a major role in fisheries management and fisheries science helping developing efficient and automated tools for cumbersome tasks such as fish species identification, stock assessment and abundance estimation. Majority of the existing tools for analysis still leverage conventional statistical algorithms and handcrafted image processing techniques which demand human interventions and are inefficient and prone to human errors. Computer vision based automated algorithms need a better generalisation capability and should be made efficient to address the ambiguities present in the underwater scenarios, and can be achieved through learning based algorithms based on artificial neural networks. This paper research about utilising the Convolutional Neural Network (CNN) based models for under water image classification for fish species identification. This paper also analyses and evaluates the performance of the proposed CNN models with different optimizers such as the Stochastic Gradient Descent (SGD),Adagrad, RMSprop, Adadelta, Adam and Nadam on classifying ten classes of images from the Fish4Knowledge(F4K) database.


Author(s):  
Nguyen Thi Thanh Nhan ◽  
Do Thanh Binh ◽  
Nguyen Huy Hoang ◽  
Vu Hai ◽  
Tran Thi Thanh Hai ◽  
...  

This paper describes some fusion techniques for achieving high accuracy species identification from images of different plant organs. Given a series of different image organs such as branch, entire, flower, or leaf, we firstly extract confidence scores for each single organ using a deep convolutional neural network. Then, various late fusion approaches including conventional transformation-based approaches (sum rule, max rule, product rule), a classification-based approach (support vector machine), and our proposed hybrid fusion model are deployed to determine the identity of the plant of interest. For single organ identification, two schemes are proposed. The first scheme uses one Convolutional neural network (CNN) for each organ while the second one trains one CNN for all organs. Two famous CNNs (AlexNet and Resnet) are chosen in this paper. We evaluate the performances of the proposed method in a large number of images of 50 species which are collected from two primary resources: PlantCLEF 2015 dataset and Internet resources. The experiment exhibits the dominant results of the fusion techniques compared with those of individual organs. At rank-1, the highest species identification accuracy of a single organ is 75.6% for flower images, whereas by applying fusion technique for leaf and flower, the accuracy reaches to 92.6%. We also compare the fusion strategies with the multi-column deep convolutional neural networks (MCDCNN) [1]. The proposed hybrid fusion scheme outperforms MCDCNN in all combinations. It obtains from + 3.0% to + 13.8% improvement in rank-1 over MCDCNN method. The evaluation datasets as well as the source codes are publicly available. Keywords: Plant identification, Convolutional neural network, Deep learning, Fusion.  


2020 ◽  
Author(s):  
S Kashin ◽  
D Zavyalov ◽  
A Rusakov ◽  
V Khryashchev ◽  
A Lebedev

Sign in / Sign up

Export Citation Format

Share Document