Alzheimer's Disease and Dementia Detection from 3D Brain MRI Data Using Deep Convolutional Neural Networks

Author(s):  
H. M. Tarek Ullah ◽  
ZishanAhmed Onik ◽  
Riashat Islam ◽  
Dip Nandi
2021 ◽  
Author(s):  
Ekin Yagis ◽  
Selamawet Workalemahu Atnafu ◽  
Alba García Seco de Herrera ◽  
Chiara Marzi ◽  
Marco Giannelli ◽  
...  

Abstract In recent years, 2D convolutional neural networks (CNNs) have been extensively used for the diagnosis of neurological diseases from magnetic resonance imaging (MRI) data due to their potential to discern subtle and intricate patterns. Despite the high performances reported in numerous studies, developing CNN models with good generalization abilities is still a challenging task due to possible data leakage introduced during cross-validation (CV). In this study, we quantitatively assessed the effect of a data leakage caused by 3D MRI data splitting based on a 2D slice-level using three 2D CNN models for the classification of patients with Alzheimer’s disease (AD) and Parkinson’s disease (PD). Our experiments showed that slice-level CV erroneously boosted the average slice level accuracy on the test set by 30% on Open Access Series of Imaging Studies (OASIS), 29% on Alzheimer’s Disease Neuroimaging Initiative (ADNI), 48% on Parkinson's Progression Markers Initiative (PPMI) and 55% on a local de-novo PD Versilia dataset. Further tests on a randomly labeled OASIS-derived dataset produced about 96% of (erroneous) accuracy (slice-level split) and 50% accuracy (subject-level split), as expected from a randomized experiment. Overall, the extent of the effect of an erroneous slice-based CV is severe, especially for small datasets.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ekin Yagis ◽  
Selamawet Workalemahu Atnafu ◽  
Alba García Seco de Herrera ◽  
Chiara Marzi ◽  
Riccardo Scheda ◽  
...  

AbstractIn recent years, 2D convolutional neural networks (CNNs) have been extensively used to diagnose neurological diseases from magnetic resonance imaging (MRI) data due to their potential to discern subtle and intricate patterns. Despite the high performances reported in numerous studies, developing CNN models with good generalization abilities is still a challenging task due to possible data leakage introduced during cross-validation (CV). In this study, we quantitatively assessed the effect of a data leakage caused by 3D MRI data splitting based on a 2D slice-level using three 2D CNN models to classify patients with Alzheimer’s disease (AD) and Parkinson’s disease (PD). Our experiments showed that slice-level CV erroneously boosted the average slice level accuracy on the test set by 30% on Open Access Series of Imaging Studies (OASIS), 29% on Alzheimer’s Disease Neuroimaging Initiative (ADNI), 48% on Parkinson’s Progression Markers Initiative (PPMI) and 55% on a local de-novo PD Versilia dataset. Further tests on a randomly labeled OASIS-derived dataset produced about 96% of (erroneous) accuracy (slice-level split) and 50% accuracy (subject-level split), as expected from a randomized experiment. Overall, the extent of the effect of an erroneous slice-based CV is severe, especially for small datasets.


2020 ◽  
Vol 10 (3) ◽  
pp. 965 ◽  
Author(s):  
Ryosuke Sato ◽  
Yutaro Iwamoto ◽  
Kook Cho ◽  
Do-Young Kang ◽  
Yen-Wei Chen

Alzheimer’s disease (AD) is an irreversible progressive cerebral disease with most of its symptoms appearing after 60 years of age. Alzheimer’s disease has been largely attributed to accumulation of amyloid beta (Aβ), but a complete cure has remained elusive. 18F-Florbetaben amyloid positron emission tomography (PET) has been shown as a more powerful tool for understanding AD-related brain changes than magnetic resonance imaging and computed tomography. In this paper, we propose an accurate classification method for scoring brain amyloid plaque load (BAPL) based on deep convolutional neural networks. A joint discriminative loss function was formulated by adding a discriminative intra-loss function to the conventional (cross-entropy) loss function. The performance of the proposed joint loss function was compared with that of the conventional loss function in three state-of-the-art deep neural network architectures. The intra-loss function significantly improved the BAPL classification performance. In addition, we showed that the mix-up data augmentation method, originally proposed for natural image classification, was also useful for medical image classification.


Sign in / Sign up

Export Citation Format

Share Document