Parallel architecture based fast algorithm for image enhancement

Author(s):  
Koushlendra Kumar Singh ◽  
Durgesh Kumar ◽  
Shubham Chauhan ◽  
Manish Kumar Bajpai
Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 746
Author(s):  
Shouxin Liu ◽  
Wei Long ◽  
Lei He ◽  
Yanyan Li ◽  
Wei Ding

We proposed the Retinex-based fast algorithm (RBFA) to achieve low-light image enhancement in this paper, which can restore information that is covered by low illuminance. The proposed algorithm consists of the following parts. Firstly, we convert the low-light image from the RGB (red, green, blue) color space to the HSV (hue, saturation, value) color space and use the linear function to stretch the original gray level dynamic range of the V component. Then, we estimate the illumination image via adaptive gamma correction and use the Retinex model to achieve the brightness enhancement. After that, we further stretch the gray level dynamic range to avoid low image contrast. Finally, we design another mapping function to achieve color saturation correction and convert the enhanced image from the HSV color space to the RGB color space after which we can obtain the clear image. The experimental results show that the enhanced images with the proposed method have better qualitative and quantitative evaluations and lower computational complexity than other state-of-the-art methods.


2021 ◽  
Vol 11 (6) ◽  
pp. 2810
Author(s):  
Yuseok Ban ◽  
Kyungjae Lee

In this study, we propose a multi-scale ensemble learning method for thermal image enhancement in different image scale conditions based on convolutional neural networks. Incorporating the multiple scales of thermal images has been a tricky task so that methods have been individually trained and evaluated for each scale. However, this leads to the limitation that a network properly operates on a specific scale. To address this issue, a novel parallel architecture leveraging the confidence maps of multiple scales have been introduced to train a network that operates well in varying scale conditions. The experimental results show that our proposed method outperforms the conventional thermal image enhancement methods. The evaluation is presented both quantitatively and qualitatively.


2000 ◽  
Vol 179 ◽  
pp. 403-406
Author(s):  
M. Karovska ◽  
B. Wood ◽  
J. Chen ◽  
J. Cook ◽  
R. Howard

AbstractWe applied advanced image enhancement techniques to explore in detail the characteristics of the small-scale structures and/or the low contrast structures in several Coronal Mass Ejections (CMEs) observed by SOHO. We highlight here the results from our studies of the morphology and dynamical evolution of CME structures in the solar corona using two instruments on board SOHO: LASCO and EIT.


Sign in / Sign up

Export Citation Format

Share Document