Analytical Solution for the Inverse Kinematics Problem of the Franka Emika Panda Seven-DOF Light-Weight Robot Arm

Author(s):  
Sven Tittel
2013 ◽  
Vol 273 ◽  
pp. 119-123
Author(s):  
Ding Jin Huang ◽  
Teng Liu

The use of traditional analytical method for manipulator inverse kinematics is able to get a display solution with the limitations of the application, only when the robotic arm has a specific structure. In view of the insufficient, this paper presents an improved artificial potential field method to solve the inverse kinematics problem of the manipulator which does not have a special structure. Firstly, establish the standard DH model for the robot arm. Then the strategy that improves search space of artificial potential field method and motion control standard is presented by combining artificial potential field method with the manipulator. Finally, the simulation results show that the proposed method is effective.


Robotica ◽  
2005 ◽  
Vol 23 (1) ◽  
pp. 123-129 ◽  
Author(s):  
John Q. Gan ◽  
Eimei Oyama ◽  
Eric M. Rosales ◽  
Huosheng Hu

For robotic manipulators that are redundant or with high degrees of freedom (dof), an analytical solution to the inverse kinematics is very difficult or impossible. Pioneer 2 robotic arm (P2Arm) is a recently developed and widely used 5-dof manipulator. There is no effective solution to its inverse kinematics to date. This paper presents a first complete analytical solution to the inverse kinematics of the P2Arm, which makes it possible to control the arm to any reachable position in an unstructured environment. The strategies developed in this paper could also be useful for solving the inverse kinematics problem of other types of robotic arms.


2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
Takehiko Ogawa ◽  
Hajime Kanada

In the context of controlling a robot arm with multiple joints, the method of estimating the joint angles from the given end-effector coordinates is called inverse kinematics, which is a type of inverse problems. Network inversion has been proposed as a method for solving inverse problems by using a multilayer neural network. In this paper, network inversion is introduced as a method to solve the inverse kinematics problem of a robot arm with multiple joints, where the joint angles are estimated from the given end-effector coordinates. In general, inverse problems are affected by ill-posedness, which implies that the existence, uniqueness, and stability of their solutions are not guaranteed. In this paper, we show the effectiveness of applying network inversion with regularization, by which ill-posedness can be reduced, to the ill-posed inverse kinematics of an actual robot arm with multiple joints.


Author(s):  
Benjamin E. Hargis ◽  
Wesley A. Demirjian ◽  
Matthew W. Powelson ◽  
Stephen L. Canfield

This study proposes using an Artificial Neural Network (ANN) to train a 6-DOF serial manipulator with a non-spherical wrist to solve the inverse kinematics problem. In this approach, an ANN has been trained to determine the configuration parameters of a serial manipulator that correspond to the position and pose of its end effector. The network was modeled after the AUBO-i5 robot arm, and the experimental results have shown the ability to achieve millimeter accuracy in tool space position with significantly reduced computational time relative to an iterative kinematic solution when applied to a subset of the workspace. Furthermore, a separate investigation was conducted to quantify the relationship between training example density, training set error, and test set error. Testing indicates that, for a given network, sufficient example point density may be approximated by comparing the training set error with test set error. The neural network training was performed using the MATLAB Neural Network Toolbox.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Hsu-Chih Huang ◽  
Sendren Sheng-Dong Xu ◽  
Huan-Shiuan Hsu

This paper presents a hybrid Taguchi deoxyribonucleic acid (DNA) swarm intelligence for solving the inverse kinematics redundancy problem of six degree-of-freedom (DOF) humanoid robot arms. The inverse kinematics problem of the multi-DOF humanoid robot arm is redundant and has no general closed-form solutions or analytical solutions. The optimal joint configurations are obtained by minimizing the predefined performance index in DNA algorithm for real-world humanoid robotics application. The Taguchi method is employed to determine the DNA parameters to search for the joint solutions of the six-DOF robot arms more efficiently. This approach circumvents the disadvantage of time-consuming tuning procedure in conventional DNA computing. Simulation results are conducted to illustrate the effectiveness and merit of the proposed methods. This Taguchi-based DNA (TDNA) solver outperforms the conventional solvers, such as geometric solver, Jacobian-based solver, genetic algorithm (GA) solver and ant, colony optimization (ACO) solver.


2004 ◽  
Vol 126 (5) ◽  
pp. 813-821 ◽  
Author(s):  
Sung K. Koh ◽  
G. K. Ananthasuresh

A sequence of rotations considered in this paper is a series of rotations of an untethered rigid body about its body-fixed axes such that the rotation about each axis is fully reversed at the end of the sequence. Due to the noncommutative property of finite rigid body rotations, such a sequence can effect nonzero changes in the orientation of the rigid body even though the net rotation about each axis is zero. These sequences are useful for attitude maneuvers of miniature spacecraft that use elastic deformation-based microactuators, or of other airborne or neutrally buoyant underwater vehicles. This paper considers the inverse kinematics problem of determining the angles in a given sequence to achieve a desired change in the orientation. Two types of problems are addressed. For the first problem, where four-rotation sequences are used, an analytical solution is presented and it is shown that a pointing vector attached to the rigid-body can be arbitrarily oriented. In the second problem, six-rotation sequences are used to control all three of the orientation freedoms of the rigid body. Some of the six-rotation sequences can provide any change in orientation while others are limited in their capabilities. A general numerical solution for all types, and a closed-form analytical solution for one type are presented along with the numerical examples and graphical visualization.


Sign in / Sign up

Export Citation Format

Share Document