redundancy resolution
Recently Published Documents


TOTAL DOCUMENTS

282
(FIVE YEARS 45)

H-INDEX

27
(FIVE YEARS 3)

2022 ◽  
Vol 167 ◽  
pp. 104531
Author(s):  
Hiparco Lins Vieira ◽  
João Vitor de Carvalho Fontes ◽  
Maíra Martins da Silva

Robotics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 1
Author(s):  
Omar W. Maaroof ◽  
Mehmet İsmet Can Dede ◽  
Levent Aydin

Redundancy resolution techniques have been widely used for the control of kinematically redundant robots. In this work, one of the redundancy resolution techniques is employed in the mechanical design optimization of a robot arm. Although the robot arm is non-redundant, the proposed method modifies robot arm kinematics by adding virtual joints to make the robot arm kinematically redundant. In the proposed method, a suitable objective function is selected to optimize the robot arm’s kinematic parameters by enhancing one or more performance indices. Then the robot arm’s end-effector is fixed at critical positions while the redundancy resolution algorithm moves its joints including the virtual joints because of the self-motion of a redundant robot. Hence, the optimum values of the virtual joints are determined, and the design of the robot arm is modified accordingly. An advantage of this method is the visualization of the changes in the manipulator’s structure during the optimization process. In this work, as a case study, a passive robotic arm that is used in a surgical robot system is considered and the task is defined as the determination of the optimum base location and the first link’s length. The results indicate the effectiveness of the proposed method.


Author(s):  
Zhan Li ◽  
Shuai Li

AbstractRedundancy manipulators need favorable redundancy resolution to obtain suitable control actions to guarantee accurate kinematic control. Among numerous kinematic control applications, some specific tasks such as minimally invasive manipulation/surgery require the distal link of a manipulator to translate along such fixed point. Such a point is known as remote center of motion (RCM) to constrain motion planning and kinematic control of manipulators. Recurrent neural network (RNN) which possesses parallel processing ability, is a powerful alternative and has achieved success in conventional redundancy resolution and kinematic control with physical constraints of joint limits. However, up to now, there still is few related works on the RNNs for redundancy resolution and kinematic control of manipulators with RCM constraints considered yet. In this paper, for the first time, an RNN-based approach with a simplified neural network architecture is proposed to solve the redundancy resolution issue with RCM constraints, with a new and general dynamic optimization formulation containing the RCM constraints investigated. Theoretical results analyze and convergence properties of the proposed simplified RNN for redundancy resolution of manipulators with RCM constraints. Simulation results further demonstrate the efficiency of the proposed method in end-effector path tracking control under RCM constraints based on a redundant manipulator.


2021 ◽  
Author(s):  
Linan Li ◽  
Min Cheng ◽  
Ruqi Ding ◽  
Junhui Zhang ◽  
Bing Xu

Abstract Due to the complexity in unstructured environments (e.g., rescue response and forestry logging), more hydraulic manipulators are equipped with one redundant joint to improve their motion flexibility. In addition to considering joint limit constraint and maneuverability optimization like electrically driven manipulators, hydraulic manipulators can optimize flow consumption consider flow optimization aiming at energy saving and flow anti-saturation for redundancy resolution, since multiple joints are supplied by one pump. Therefore, this paper proposes a redundancy resolution method combining the gradient projection method with a weighted Jacobian matrix (GPM-WJM) for real-time flow optimization of the hydraulic manipulator with one degree of redundancy considering joint limit constraint. Its solution consists of two parts: a special solution (the weighted least-norm solution) and a general solution (the projection of the optimization index in the null space of the weighted task Jacobian matrix). Simulations are carried out to verify its effectiveness. The simulation result shows that GPM-WJM can meet the constraints of joint limit without affecting the tool center point (TCP) trajectory and utilize the remaining redundancy to optimize the flow consumption and manipulability in real-time, which can reduce average system flow by 10.45%. Compared with the gradient projection method (GPM) for flow optimization, GPM-WJM can reduce the maximum acceleration when avoiding the joint limits by 80% at the cost of slightly weakening the flow optimization effect, which is beneficial to improve the accuracy of the manipulator in practice.


Robotica ◽  
2021 ◽  
pp. 1-17
Author(s):  
João Vitor de Carvalho Fontes ◽  
Fernanda Thaís Colombo ◽  
Natássya Barlate Floro da Silva ◽  
Maíra Martins da Silva

Abstract One alternative to overcome the presence of singularities within Parallel Manipulators’ workspace is kinematic redundancy. This design alternative can be realized by adding an extra active joint to a kinematic chain. Due to this addition, the IKM presents an infinite number of solutions requiring a redundancy resolution scheme. Moreover, Parallel Manipulators’ control may require complex strategies due to their coupled and complex dynamic and kinematic relations. In this work, a model-free, a joint space computed torque, and a hybrid joint-task-space computed torque control strategies are experimentally compared for a kinematically redundant parallel manipulator. The latter is a novel strategy that requires the measurement of the end-effector’s pose, which is performed by an eye-to-hand limited frame rate camera. The impact of up to three kinematic redundancy levels is also experimentally evaluated using prepositioning and ongoing positioning redundancy resolution schemes. The data are assessed by evaluating a prescribed trajectory executed using a planar kinematically redundant parallel manipulator. These results indicate that kinematic redundancy can not only be used as an alternative design for reducing the presence of singular regions, as claimed in the literature, but also be used along with model-based control strategies for improving dynamic performance and accuracy of parallel manipulators.


Robotica ◽  
2021 ◽  
pp. 1-26
Author(s):  
Yongxiang Wu ◽  
Yili Fu ◽  
Shuguo Wang

Abstract The multi-arm robotic systems consisting of redundant robots are able to conduct more complex and coordinated tasks, such as manipulating large or heavy objects. The challenges of the motion planning and control for such systems mainly arise from the closed-chain constraint and redundancy resolution problem. The closed-chain constraint reduces the configuration space to lower-dimensional subsets, making it difficult for sampling feasible configurations and planning path connecting them. A global motion planner is proposed in this paper for the closed-chain systems, and motions in different disconnected manifolds are efficiently bridged by two type regrasping moves. The regrasping moves are automatically chosen by the planner based on cost-saving principle, which greatly improve the success rate and efficiency. Furthermore, to obtain the optional inverse kinematic solutions satisfying joint physical limits (e.g., joint position, velocity, acceleration limits) in the planning, the redundancy resolution problem for dual redundant robots is converted into a unified quadratic programming problem based on the combination of two diff erent-level optimizing criteria, i.e. the minimization velocity norm (MVN) and infinity norm torque-minimization (INTM). The Dual-MVN-INTM scheme guarantees smooth velocity, acceleration profiles, and zero final velocity at the end of motion. Finally, the planning results of three complex closed-chain manipulation task using two Franka Emika Panda robots and two Kinova Jaco2 robots in both simulation and experiment demonstrate the effectiveness and efficiency of the proposed method.


2021 ◽  
Vol 11 (11) ◽  
pp. 4746
Author(s):  
Ahmad AlAttar ◽  
Francesco Cursi ◽  
Petar Kormushev

Robots have been predominantly controlled using conventional control methods that require prior knowledge of the robots’ kinematic and dynamic models. These controllers can be challenging to tune and cannot directly adapt to changes in kinematic structure or dynamic properties. On the other hand, model-learning controllers can overcome such challenges. Our recently proposed model-learning orientation controller has shown promising ability to simultaneously control a three-degrees-of-freedom robot manipulator’s end-effector pose. However, this controller does not perform optimally with robots of higher degrees-of-freedom nor does it resolve redundancies. The research presented in this paper extends the state-of-the-art kinematic-model-free controller to perform pose control of hyper-redundant robot manipulators and resolve redundancies by tracking and controlling multiple points along the robot’s serial chain. The results show that with more control points, the controller is able to reach desired poses in fewer steps, yielding an improvement of up to 66%, and capable of achieving complex configurations. The algorithm was validated by running the simulation 100 times, and it was found that, in 82% of the times, the robot successfully reached the desired target pose within 150 steps.


Sign in / Sign up

Export Citation Format

Share Document