EMMA: Earthworm Mimetic Manipulator Architecture for Access-Constrained Environments

Author(s):  
Preeti Kannapan ◽  
David Garmire ◽  
Robert Gregg
2020 ◽  
Vol 53 (2) ◽  
pp. 4088-4094
Author(s):  
Raffaele Romagnoli ◽  
Paul Griffioen ◽  
Bruce H. Krogh ◽  
Bruno Sinopoli

Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 605
Author(s):  
Da-Zhi Sun ◽  
Ji-Dong Zhong ◽  
Hong-De Zhang ◽  
Xiang-Yu Guo

A basic but expensive operation in the implementations of several famous public-key cryptosystems is the computation of the multi-scalar multiplication in a certain finite additive group defined by an elliptic curve. We propose an adaptive window method for the multi-scalar multiplication, which aims to balance the computation cost and the memory cost under register-constrained environments. That is, our method can maximize the computation efficiency of multi-scalar multiplication according to any small, fixed number of registers provided by electronic devices. We further demonstrate that our method is efficient when five registers are available. Our method is further studied in detail in the case where it is combined with the non-adjacent form (NAF) representation and the joint sparse form (JSF) representation. One efficiency result is that our method with the proposed improved NAF n-bit representation on average requires 209n/432 point additions. To the best of our knowledge, this efficiency result is optimal compared with those of similar methods using five registers. Unlike the previous window methods, which store all possible values in the window, our method stores those with comparatively high probabilities to reduce the number of required registers.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
J. M. Lazarus ◽  
M. Ncube

Abstract Background Technology currently used for surgical endoscopy was developed and is manufactured in high-income economies. The cost of this equipment makes technology transfer to resource constrained environments difficult. We aimed to design an affordable wireless endoscope to aid visualisation during rigid endoscopy and minimally invasive surgery (MIS). The initial prototype aimed to replicate a 4-mm lens used in rigid cystoscopy. Methods Focus was placed on using open-source resources to develop the wireless endoscope to significantly lower the cost and make the device accessible for resource-constrained settings. An off the shelf miniature single-board computer module was used because of its low cost (US$10) and its ability to handle high-definition (720p) video. Open-source Linux software made monitor mode (“hotspot”) wireless video transmission possible. A 1280 × 720 pixel high-definition tube camera was used to generate the video signal. Video is transmitted to a standard laptop computer for display. Bench testing included latency of wireless digital video transmission. Comparison to industry standard wired cameras was made including weight and cost. The battery life was also assessed. Results In comparison with industry standard cystoscope lens, wired camera, video processing unit and light source, the prototype costs substantially less. (US$ 230 vs 28 000). The prototype is light weight (184 g), has no cables tethering and has acceptable battery life (of over 2 h, using a 1200 mAh battery). The camera transmits video wirelessly in near real time with only imperceptible latency of < 200 ms. Image quality is high definition at 30 frames per second. Colour rendering is good, and white balancing is possible. Limitations include the lack of a zoom. Conclusion The novel wireless endoscope camera described here offers equivalent high-definition video at a markedly reduced cost to contemporary industry wired units and could contribute to making minimally invasive surgery possible in resource-constrained environments.


2021 ◽  
Vol 3 (6) ◽  
Author(s):  
John Akagi ◽  
T. Devon Morris ◽  
Brady Moon ◽  
Xingguang Chen ◽  
Cameron K. Peterson

Abstract Directing groups of unmanned air vehicles (UAVs) is a task that typically requires the full attention of several operators. This can be prohibitive in situations where an operator must pay attention to their surroundings. In this paper we present a gesture device that assists operators in commanding UAVs in focus-constrained environments. The operator influences the UAVs’ behavior by using intuitive hand gesture movements. Gestures are captured using an accelerometer and gyroscope and then classified using a logistic regression model. Ten gestures were chosen to provide behaviors for a group of fixed-wing UAVs. These behaviors specified various searching, following, and tracking patterns that could be used in a dynamic environment. A novel variant of the Monte Carlo Tree Search algorithm was developed to autonomously plan the paths of the cooperating UAVs. These autonomy algorithms were executed when their corresponding gesture was recognized by the gesture device. The gesture device was trained to classify the ten gestures and accurately identified them 95% of the time. Each of the behaviors associated with the gestures was tested in hardware-in-the-loop simulations and the ability to dynamically switch between them was demonstrated. The results show that the system can be used as a natural interface to assist an operator in directing a fleet of UAVs. Article highlights A gesture device was created that enables operators to command a group of UAVs in focus-constrained environments. Each gesture triggers high-level commands that direct a UAV group to execute complex behaviors. Software simulations and hardware-in-the-loop testing shows the device is effective in directing UAV groups.


ACS Nano ◽  
2021 ◽  
Author(s):  
Marek Hempel ◽  
Vera Schroeder ◽  
Chibeom Park ◽  
Volodymyr B. Koman ◽  
Mantian Xue ◽  
...  

2018 ◽  
Vol 4 (3) ◽  
pp. 137-155 ◽  
Author(s):  
Sajid Nazir ◽  
Hassan Hamdoun ◽  
Fabio Verdicchio ◽  
Gorry Fairhurst

Sign in / Sign up

Export Citation Format

Share Document