Increasing the Autonomy of Mobile Robots by On-line Learning Simultaneously at Different Levels of Abstraction

Author(s):  
Willi Richert ◽  
Olaf L ◽  
Bastian Nordmeyer ◽  
Bernd Kleinjohann
2012 ◽  
Vol 18 (6) ◽  
pp. 562-570 ◽  
Author(s):  
Hyung-Ho Lee ◽  
Xuenan Cui ◽  
Hyoung-Rae Kim ◽  
Seong-Wan Ma ◽  
Jae-Hong Lee ◽  
...  

Author(s):  
ABDALLAH HAMMAD ◽  
SIMON X. YANG ◽  
M. TAREK ELEWA ◽  
HALA MANSOUR ◽  
SALAH ALI

In this paper, novel virtual instrumentation based systems for real-time collision-free path planning and tracking control of mobile robots are proposed. The developed virtual instruments are computationally simple and efficient in comparison to other approaches, which act as a new soft-computing platform to implement a biologically-inspired neural network. This neural network is topologically arranged with only local lateral connections among neurons. The dynamics of each neuron is described by a shunting equation with both excitatory and inhibitory connections. The neural network requires no off-line training or on-line learning, which is capable of planning a comfortable trajectory to the target without suffering from neither the too close nor the too far problems. LabVIEW is chosen as the software platform to build the proposed virtual instrumentation systems, as it is one of the most important industrial platforms. We take the initiative to develop the first neuro-dynamic application in LabVIEW. The developed virtual instruments could be easily used as educational and research tools for studying various robot path planning and tracking situations that could be easily understood and analyzed step by step. The effectiveness and efficiency of the developed virtual instruments are demonstrated through simulation and comparison studies.


2010 ◽  
Vol 24 (2) ◽  
pp. 91-101 ◽  
Author(s):  
Juliana Yordanova ◽  
Rolf Verleger ◽  
Ullrich Wagner ◽  
Vasil Kolev

The objective of the present study was to evaluate patterns of implicit processing in a task where the acquisition of explicit and implicit knowledge occurs simultaneously. The number reduction task (NRT) was used as having two levels of organization, overt and covert, where the covert level of processing is associated with implicit associative and implicit procedural learning. One aim was to compare these two types of implicit processes in the NRT when sleep was or was not introduced between initial formation of task representations and subsequent NRT processing. To assess the effects of different sleep stages, two sleep groups (early- and late-night groups) were used where initial training of the task was separated from subsequent retest by 3 h full of predominantly slow wave sleep (SWS) or rapid eye movement (REM) sleep. In two no-sleep groups, no interval was introduced between initial and subsequent NRT performance. A second aim was to evaluate the interaction between procedural and associative implicit learning in the NRT. Implicit associative learning was measured by the difference between the speed of responses that could or could not be predicted by the covert abstract regularity of the task. Implicit procedural on-line learning was measured by the practice-based increased speed of performance with time on task. Major results indicated that late-night sleep produced a substantial facilitation of implicit associations without modifying individual ability for explicit knowledge generation or for procedural on-line learning. This was evidenced by the higher rate of subjects who gained implicit knowledge of abstract task structure in the late-night group relative to the early-night and no-sleep groups. Independently of sleep, gain of implicit associative knowledge was accompanied by a relative slowing of responses to unpredictable items suggesting reciprocal interactions between associative and motor procedural processes within the implicit system. These observations provide evidence for the separability and interactions of different patterns of processing within implicit memory.


2001 ◽  
Vol 1 (2) ◽  
pp. 27-27
Author(s):  
Cliff Beevers
Keyword(s):  
On Line ◽  

Author(s):  
Elena Rica ◽  
Susana Álvarez ◽  
Francesc Serratosa

Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5136
Author(s):  
Bassem Ouni ◽  
Christophe Aussagues ◽  
Saadia Dhouib ◽  
Chokri Mraidha

Sensor-based digital systems for Instrumentation and Control (I&C) of nuclear reactors are quite complex in terms of architecture and functionalities. A high-level framework is highly required to pre-evaluate the system’s performance, check the consistency between different levels of abstraction and address the concerns of various stakeholders. In this work, we integrate the development process of I&C systems and the involvement of stakeholders within a model-driven methodology. The proposed approach introduces a new architectural framework that defines various concepts, allowing system implementations and encompassing different development phases, all actors, and system concerns. In addition, we define a new I&C Modeling Language (ICML) and a set of methodological rules needed to build different architectural framework views. To illustrate this methodology, we extend the specific use of an open-source system engineering tool, named Eclipse Papyrus, to carry out many automation and verification steps at different levels of abstraction. The architectural framework modeling capabilities will be validated using a realistic use case system for the protection of nuclear reactors. The proposed framework is able to reduce the overall system development cost by improving links between different specification tasks and providing a high abstraction level of system components.


Sign in / Sign up

Export Citation Format

Share Document