Bayesian Joint Detection-Estimation of Brain Activity Using MCMC With a Gamma-Gaussian Mixture Prior Model

Author(s):  
S. Makni ◽  
P. Ciuciu ◽  
J. Idier ◽  
J.-B. Poline
2010 ◽  
Vol 68 ◽  
pp. e332
Author(s):  
Taku Yoshioka ◽  
Ken-ichi Morishige ◽  
Mitsuo Kawato ◽  
Masa-aki Sato

Geophysics ◽  
2018 ◽  
Vol 83 (3) ◽  
pp. R227-R244 ◽  
Author(s):  
Mattia Aleardi ◽  
Fabio Ciabarri ◽  
Timur Gukov

We have evaluated a two-step Bayesian algorithm for seismic-reservoir characterization, which, thanks to some simplifying assumptions, is computationally very efficient. The applicability and reliability of this method are assessed by comparison with a more sophisticated and computer-intensive Markov-chain Monte Carlo (MCMC) algorithm, which in a single loop directly estimates petrophysical properties and lithofluid facies from prestack data. The two-step method first combines a linear rock-physics model (RPM) with the analytical solution of a linearized amplitude versus angle (AVA) inversion, to directly estimate the petrophysical properties, and related uncertainties, from prestack data under the assumptions of a Gaussian prior model and weak elastic contrasts at the reflecting interface. In particular, we use an empirical, linear RPM, properly calibrated for the investigated area, to reparameterize the linear time-continuous P-wave reflectivity equation in terms of petrophysical contrasts instead of elastic constants. In the second step, a downward 1D Markov-chain prior model is used to infer the lithofluid classes from the outcomes of the first step. The single-loop (SL) MCMC algorithm uses a convolutional forward modeling based on the exact Zoeppritz equations, and it adopts a nonlinear RPM. Moreover, it assumes a more realistic Gaussian mixture distribution for the petrophysical properties. Both approaches are applied on an onshore 3D seismic data set for the characterization of a gas-bearing, clastic reservoir. Notwithstanding the differences in the forward-model parameterization, in the considered RPM, and in the assumed a priori probability density functions, the two methods yield maximum a posteriori solutions that are consistent with well-log data, although the Gaussian mixture assumption adopted by the SL method slightly improves the description of the multimodal behavior of the petrophysical parameters. However, in the considered reservoir, the main difference between the two approaches remains the very different computational times, the SL method being much more computationally intensive than the two-step approach.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1857
Author(s):  
Peng Sun ◽  
Fei Liu ◽  
Jianhua Cui ◽  
Wei Wang ◽  
Yangdong Ye ◽  
...  

Few-bit analog-to-digital converter (ADC) is regarded as a promising technique to greatly reduce power consumption of Internet of Things (IoT) devices in millimeter-wave (mmWave) communications. In this work, based on the recently proposed parametric bilinear generalized approximate message passing (PBiGAMP), we propose a new scheme to perform joint symbol detection, channel estimation and decoding. The proposed scheme is flexible to deal with discrete prior on symbols, Gaussian mixture prior on channels and quantized likelihood on observations. Furthermore, we introduce doping factor to control the portion of “extrinsic” and “posterior” information with negligible complexity increase. Since this joint scheme can be implemented via fast Fourier transformation (FFT), the complexity grows only logarithmically. Compared to the benchmark algorithms, numerical results show that the proposed joint scheme can achieve significant performance gain, and demonstrate the effectiveness in dealing with the nonlinear distortion from few-bit ADC.


Sign in / Sign up

Export Citation Format

Share Document