Implementation of Neural Network for the Liver Disease Classification

Author(s):  
Tristan Joseph C. Limchesing ◽  
Nilo T. Bugtai ◽  
Renann G. Baldovino
2022 ◽  
Vol 73 ◽  
pp. 103463
Author(s):  
Demet Alici-Karaca ◽  
Bahriye Akay ◽  
Arzu Yay ◽  
Pinar Suna ◽  
O. Ufuk Nalbantoglu ◽  
...  

Author(s):  
Abhay Patil

Abstract: The assurance of coronary ailment a large part of the time depends upon an eccentric mix of clinical and masochist data. Considering this multifaceted nature, there exists a ton of income among clinical specialists and experts with respect to the useful and careful assumption for coronary sickness. In this paper, we cultivate a coronary disease prediction system that can help clinical specialists in expecting coronary ailment status reliant upon the clinical data of patients. Man-made intelligence-gathering strategies are amazingly useful in the clinical field by giving accurate results and quick finishes of ailments. Thusly, these techniques save part of the ideal opportunity for the two trained professionals and patients. The neural associations can be used as classifiers to expect the assurance of Cardiovascular Heart disorder. Keywords: Cardio Vascular disease, Classification, Artificial neural network, Categorical model and Binary model


Author(s):  
Yi-Shu Chen ◽  
Dan Chen ◽  
Chao Shen ◽  
Ming Chen ◽  
Chao-Hui Jin ◽  
...  

Abstract Background The artificial neural network (ANN) emerged recently as a potent diagnostic tool, especially for complicated systemic diseases. This study aimed to establish a diagnostic model for the recognition of fatty liver disease (FLD) by virtue of the ANN. Methods A total of 7,396 pairs of gender- and age-matched subjects who underwent health check-ups at the First Affiliated Hospital, College of Medicine, Zhejiang University (Hangzhou, China) were enrolled to establish the ANN model. Indices available in health check-up reports were utilized as potential input variables. The performance of our model was evaluated through a receiver-operating characteristic (ROC) curve analysis. Other outcome measures included diagnostic accuracy, sensitivity, specificity, Cohen’s k coefficient, Brier score, and Hosmer-Lemeshow test. The Fatty Liver Index (FLI) and the Hepatic Steatosis Index (HSI), retrained using our training-group data with its original designated input variables, were used as comparisons in the capability of FLD diagnosis. Results Eight variables (age, gender, body mass index, alanine aminotransferase, aspartate aminotransferase, uric acid, total triglyceride, and fasting plasma glucose) were eventually adopted as input nodes of the ANN model. By applying a cut-off point of 0.51, the area under ROC curves of our ANN model in predicting FLD in the testing group was 0.908 [95% confidence interval (CI), 0.901–0.915]—significantly higher (P < 0.05) than that of the FLI model (0.881, 95% CI, 0.872–0.891) and that of the HSI model (0.885; 95% CI, 0.877–0.893). Our ANN model exhibited higher diagnostic accuracy, better concordance with ultrasonography results, and superior capability of calibration than the FLI model and the HSI model. Conclusions Our ANN system showed good capability in the diagnosis of FLD. It is anticipated that our ANN model will be of both clinical and epidemiological use in the future.


Author(s):  
Sachin B. Jadhav

<span lang="EN-US">Plant pathologists desire soft computing technology for accurate and reliable diagnosis of plant diseases. In this study, we propose an efficient soybean disease identification method based on a transfer learning approach by using a pre-trained convolutional neural network (CNN’s) such as AlexNet, GoogleNet, VGG16, ResNet101, and DensNet201. The proposed convolutional neural networks were trained using 1200 plant village image dataset of diseased and healthy soybean leaves, to identify three soybean diseases out of healthy leaves. Pre-trained CNN used to enable a fast and easy system implementation in practice. We used the five-fold cross-validation strategy to analyze the performance of networks. In this study, we used a pre-trained convolutional neural network as feature extractors and classifiers. The experimental results based on the proposed approach using pre-trained AlexNet, GoogleNet, VGG16, ResNet101, and DensNet201 networks achieve an accuracy of 95%, 96.4 %, 96.4 %, 92.1%, 93.6% respectively. The experimental results for the identification of soybean diseases indicated that the proposed networks model achieves the highest accuracy</span>


Author(s):  
Faizan Ahmed Sayyad ◽  
Rehan Ahmed Sayyad

Many research has been done on detecting the type of disease that affects the crops. Because of this the farmers use pesticides to reduce the loss of crop production, since they don’t know how much pesticides to spray or use, they tend to overuse them which eventually leads to further destruction of crops. For disease classification Convolutional Neural Network (CNN) is being used which lets you know what kind of disease has affected the crop. In this paper we have worked on self attention networks to calculate the severity of the disease on the leaf . Self Attention Network introduced in the architecture lets the model learn the feature more efficiently and focus more on the affected region of the leaf. The model was trained and tested on the standard dataset (Plant Village) . The core processes comprises image capturing, image processing and testing on Self Attention Convolutional Neural Network architecture.. All of the key steps required to implement the model are detailed throughout the document.


Sign in / Sign up

Export Citation Format

Share Document