scholarly journals Study of drought impact on inland navigation systems based on a flow network model

Author(s):  
Houda Nouasse ◽  
Lala Rajaoarisoa ◽  
Arnaud Doniec ◽  
Eric Duviella ◽  
Karine Chuquet ◽  
...  
2021 ◽  
Author(s):  
Davendu Y. Kulkarni ◽  
Luca di Mare

Abstract The design and analysis of the secondary air system (SAS) of gas turbine engine is a complex and time-consuming process because of its complicated geometry topology. The conventional SAS design-analysis model generation process is quite tedious, time consuming. It is still heavily dependent on human expertise and thus incurs high time-cost. This paper presents an automated, whole-engine SAS flow network model generation methodology. During the SAS preprocessing step, the method accesses a pre-built whole-engine geometry model created using a novel, in-house, feature-based geometry modelling environment. It then transforms the engine geometry features into the features suitable for SAS flow network analysis. The proposed method not only extracts the geometric information from the computational geometry but also retrieves additional non-geometric attributes such as, rotational frames, boundary types, materials and boundary conditions etc. Apart from ensuring geometric consistency, this methodology also establishes a bi-directional information exchange protocol between engine geometry model and SAS flow network model, which enables making engine geometry modifications based on SAS analysis results. The application of this feature mapping methodology is demonstrated by generating the secondary air system (SAS) flow network model of a modern three-shaft gas turbine engine. This capability is particularly useful for the integration of geometry modeler with the simulation framework. The present SAS model is generated within a few minutes, without any human intervention, which significantly reduces the SAS design-analysis time-cost. The proposed method allows performing a large number of whole-engine SAS simulations, design optimisations and fast re-design activities.


2020 ◽  
Vol 24 (3 Part B) ◽  
pp. 1977-1989
Author(s):  
Seyfettin Hataysal ◽  
Ahmet Yozgatligil

Gas turbine combustor performance was explored by utilizing a 1-D flow network model. To obtain the preliminary performance of combustion chamber, three different flow network solvers were coupled with a chemical reactor network scheme. These flow solvers were developed via simplified, segregated and direct solutions of the nodal equations. Flow models were utilized to predict the flow field, pressure, density and temperature distribution inside the chamber network. The network model followed a segregated flow and chemical network scheme, and could supply information about the pressure drop, nodal pressure, average temperature, species distribution, and flow split. For the verification of the model?s results, analyses were performed using CFD on a seven-stage annular test combustor from TUSAS Engine Industries, and the results were then compared with actual performance tests of the combustor. The results showed that the preliminary performance predictor code accurately estimated the flow distribution. Pressure distribution was also consistent with the CFD results, but with varying levels of conformity. The same was true for the average temperature predictions of the inner combustor at the dilution and exit zones. However, the reactor network predicted higher elemental temperatures at the entry zones.


Author(s):  
Parthiv N. Shah ◽  
Tricia Waniewski Sur ◽  
R. Scott Miskovish ◽  
Albert Robinson

This paper presents a theoretical one-dimensional model and computational fluid dynamics (CFD) simulations of a tailcone-installed APU cooling system. The work is motivated by the need to deliver sufficient cooling airflow to critical components within an aircraft tailcone compartment. The cooling system considered herein utilizes (1) an eductor system at the APU exhaust and (2) a ram air scoop near an upstream inlet to the compartment to induce the necessary cooling flow during ground and in-flight APU operation. A one-dimensional flow network model provides a framework for the quantification and matching of eductor pumping and system pressure drop characteristics. Detailed CFD models that simulate internal tailcone compartment flows driven by ambient conditions external to the aircraft in ground or flight operation support the one-dimensional model and are used to characterize component performance and assess different scoop and eductor designs. The one-dimensional flow network model is calibrated to the CFD results to predict system cooling performance under known APU loads at points on the ground and in the flight envelope. The agreement between the models is encouraging and suggests the modeling framework and CFD techniques discussed will be applicable to future designs and improvements of eductor-driven aircraft compartment cooling systems.


Computing ◽  
2009 ◽  
Vol 85 (3) ◽  
pp. 245-265 ◽  
Author(s):  
A. Fügenschuh ◽  
S. Göttlich ◽  
M. Herty ◽  
C. Kirchner ◽  
A. Martin

Sign in / Sign up

Export Citation Format

Share Document