Volume 1: Aircraft Engine; Ceramics; Coal, Biomass and Alternative Fuels; Controls, Diagnostics and Instrumentation
Latest Publications


TOTAL DOCUMENTS

96
(FIVE YEARS 0)

H-INDEX

6
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791844670

Author(s):  
Michele Scervini ◽  
Catherine Rae

A new Nickel based thermocouple for high temperature applications in gas turbines has been devised at the Department of Material Science and Metallurgy of the University of Cambridge. This paper describes the new features of the thermocouple, the drift tests on the first prototype and compares the behaviour of the new sensor with conventional mineral insulated metal sheathed Type K thermocouples: the new thermocouple has a significant improvement in terms of drift and temperature capabilities. Metallurgical analysis has been undertaken on selected sections of the thermocouples exposed at high temperatures which rationalises the reduced drift of the new sensor. A second prototype will be tested in follow-on research, from which further improvements in drift and temperature capabilities are expected.


Author(s):  
J. Town ◽  
A. Akturk ◽  
C. Camcı

Five-hole probes, being a dependable and accurate aerodynamic tools, are excellent choices for measuring complex flow fields. However, total pressure gradients can induce measurement errors. The combined effect of the different flow conditions on the ports causes the measured total pressure to be prone to a greater error. This paper proposes a way to correct the total pressure measurement. The correction is based on the difference between the measured total pressure data of a Kiel probe and a sub-miniature prism-type five-hole probe. By comparing them in a ducted fan related flow field, a line of best fit was constructed. The line of best fit is dependent on the slope of the line in a total pressure versus span and difference in total pressure between the probes at the same location. A computer program, performs the comparison and creates the correction equation. The equation is subsequently applied to the five-hole probe total pressure measurement, and the other dependent values are adjusted. The validity of the correction is then tested by placing the Kiel probe and the five-hole probe in ducted fans with a variety of different tip clearances.


Author(s):  
Christoph Jörg ◽  
Michael Wagner ◽  
Thomas Sattelmayer

The thermoacoustic stability of gas turbines depends on a balance of acoustic energy inside the engine. While the flames produce acoustic energy, other areas like the impingement cooling system contribute to damping. In this paper, we investigate the damping potential of an annular impingement sleeve geometry embedded into a realistic environment. A cold flow test rig was designed to represent real engine conditions in terms of geometry, and flow situation. High quality data was delivered by six piezoelectric dynamic pressure sensors. Experiments were carried out for different mean flow velocities through the cooling holes. The acoustic reflection coefficient of the impingement sleeve was evaluated at a downstream reference location. Further parameters investigated were the number of cooling holes, and the geometry of the chamber surrounding the impingement sleeve. Experimental results show that the determining parameter for the reflection coefficient is the mean flow velocity through the impingement holes. An increase of the mean flow velocity leads to significantly increased damping, and to low values of the reflection coefficient.


Author(s):  
Leiyong Jiang

Based on the previous benchmark studies on combustion, scalar transfer and radiation models, a critical evaluation of turbulence models in a propane-air diffusion flame combustor with interior and exterior conjugate heat transfers has been performed. Results obtained from six turbulence models are presented and compared in detail with a comprehensive database obtained from a series of experimental measurements. It is found that the Reynolds stress model (RSM), a second moment closure, is superior over the five popular eddy-viscosity two-equation models. Although the main flow patterns are captured by all six turbulence models, only the RSM is able to successfully predict the lengths of both recirculation zones and give fairly accurate predictions for mean velocity, temperature, CO2 and CO mole fractions, as well as turbulence kinetic energy in the combustor chamber. In addition, the realizable k-ε (Rk-ε) model illustrates better performance than four other two-equation models and can provide comparable results to those from the RSM for the configuration and operating conditions considered in the present study.


Author(s):  
William C. Schneck ◽  
Walter F. O’Brien

Immersed bodies such as struts, vanes, and instrumentation probes in gas turbine flow systems will, except at the lowest of flow velocities, shed separated wakes. These wakes can have both upstream and downstream effects on the surrounding flow. In most applications, surrounding components are designed to be in the presence of a quasi-steady or at least non-variant flow field. The presence of unsteady wakes has both aerodynamic and structural consequences. Active flow control of wake generation can therefore be very valuable. One means to implement active flow control is by the use of plasma actuation. Plasma actuation is the use of strong electric fields to generate ionized gas that can be actuated and controlled using the electric fields. The controlling device can be based on AC, DC, or pulsed-DC actuation. The present research was conducted using pulsed-DC from a capacitive discharge power supply. The study demonstrates the applicability of, specifically, pulsed-DC plasma flow control of the flow on a circular cylinder at high Reynolds numbers. The circular cylinder was selected because its flow characteristics are related to gas turbine flowpath phenomena, and are well characterized. Further, the associated pressure gradients are some of the most severe encountered in fluid applications. The development of effective plasma actuators at high Reynolds numbers under the influence of severe pressure gradients is a necessary step toward developing useful actuators for gas turbine applications beyond laboratory use. The reported experiments were run at Reynolds numbers varying from 50,000 to 97,000, and utilizing various pulse frequencies. Further, the observed performance differences with varying electric field strengths are discussed for these Reynolds numbers. The results show that flow behaviors at high Reynolds numbers can be influenced by these types of actuators. The actuators were able to demonstrate a reduction in both wake width and momentum deficit.


Author(s):  
Gary G. Podboy

An experiment was conducted to investigate the effect that a planar surface located near a jet flow has on the noise radiated to the far-field. Two different configurations were tested: 1) a shielding configuration in which the surface was located between the jet and the far-field microphones, and 2) a reflecting configuration in which the surface was mounted on the opposite side of the jet, and thus the jet noise was free to reflect off the surface toward the microphones. Both conventional far-field microphone and phased array noise source localization measurements were obtained. This paper discusses phased array results, while a companion paper discusses far-field results. The phased array data show that the axial distribution of noise sources in a jet can vary greatly depending on the jet operating condition and suggests that it would first be necessary to know or be able to predict this distribution in order to be able to predict the amount of noise reduction to expect from a given shielding configuration. The data obtained on both subsonic and supersonic jets show that the noise sources associated with a given frequency of noise tend to move downstream, and therefore, would become more difficult to shield, as jet Mach number increases. The noise source localization data obtained on cold, shock-containing jets suggests that the constructive interference of sound waves that produces noise at a given frequency within a broadband shock noise hump comes primarily from a small number of shocks, rather than from all the shocks at the same time. The reflecting configuration data illustrates that the law of reflection must be satisfied in order for jet noise to reflect off of a surface to an observer, and depending on the relative locations of the jet, the surface, and the observer, only some of the jet noise sources may satisfy this requirement.


Author(s):  
Jeffrey Schutte ◽  
Jimmy Tai ◽  
Jonathan Sands ◽  
Dimitri Mavris

The focus of this study is to compare the aerothermodynamic cycle design space of a gas turbine engine generated using two on-design approaches. The traditional approach uses a single design point (SDP) for on-design cycle analysis, where off-design cycle analysis must be performed at other operating conditions of interest. A multi-design point (MDP) method performs on-design cycle analysis at all operating conditions where performance requirements are specified. Effects on the topography of the cycle design space as well as the feasibility of the space are examined. The impacts that performance requirements and cycle assumptions have on the bounds and topography of the feasible space are investigated. The deficiencies of a SDP method in determining an optimum gas turbine engine will be shown for a given set of requirements. Analysis will demonstrate that the MDP method, unlike the SDP method, always obtains a properly sized engine for a set of given requirements and cycle design variables, resulting in an increased feasible region of the aerothermodynamic cycle design space from which the optimum performance engine can be obtained.


Author(s):  
Rafael Barbosa ◽  
Sandro Ferreira ◽  
Raphael Duarte ◽  
Paula Ribeiro Pinto ◽  
Marília Paula e Silva

In recent years, combined cycle power plants showed remarkable progress in the safe operation and reliability of their equipment, mostly because of the reliable control and instrumentation systems available today. However, these systems cannot detect and evaluate inconsistencies in the behaviour of equipment due to failures and avoid trips caused by catastrophic events. Computer models developed to simulate the power plant equipment are often employed in diagnosis tools in order to provide accurate healthy parameters that are compared to the field measured parameters. In this work, the computer models built for the simulation of some of the main bottoming cycle equipment of a real power plant (steam turbine, HRSG, boiler feed water pumps and condenser) are described. These models were developed through characteristics maps and constitutive equations related to the fluid path analysis, implemented in Fortran language. The results provided by the developed models for each equipment show good agreement with operational data at base and partial load in simulations that covered a good part of the load domain. Due to the good agreement between the measured parameters values and those calculated through simulation, these models are intended to be included in an on-line fuzzy-based diagnosis system.


Author(s):  
Herwart T. Hoenen ◽  
Robert Kunte ◽  
Phillip Waniczek ◽  
Peter Jeschke

Systematic measurements have been performed in a free stream in order to analyse the measuring behaviour of pneumatic multi-hole probes in the gradient field of a wake of an airfoil. The five-hole probe was traversed in different axial distances from the trailing edge and the results were compared to PIV and hot film probe measurements. The direct comparison of the three measurement techniques shows that too small axial distances between a five-hole probe and an airfoil trailing edge introduce significant measurement errors. Different effects were analysed in order to evaluate their influence on the measuring results and to estimate the deviation from the real flow properties. The limitations of probe measurements and the influences of the probe on the flow field are discussed. It is explained how pneumatic multi-hole probe measuring data can be corrected in order to improve the measuring results. In order to demonstrate the suitability of the correction method for turbo machinery application it is applied to measurement results of an axial compressor test rig.


Author(s):  
Nicolas Van de Wyer ◽  
Jean-François Brouckaert ◽  
Rinaldo L. Miorini

This paper deals with the use of the infinite line pressure probes (ILP) to measure fluctuating pressures in hot environments in turbomachinery applications. These probes, sometimes called waveguide measuring systems, and composed of a series of lines and cavities are using a remote pressure sensor. Ideally they should form a non-resonant system. This is however not always the case and the frequency response of these systems is of course limited by the tubing (diameter and length) but is also highly dependent on other geometrical parameters like sudden expansions or discontinuities in the tubing, or parasite cavities. The development of a new model for ILP simulation, based on the analogy between the propagation of the pressure waves in a line-cavity system and the electrical transmission line, is presented. Unlike the models based on the Bergh and Tijdeman equations, this approach allows the simulation of systems presenting parallel branches. This makes the model appropriate for the prediction of the frequency response of ILP. The model is validated by a comparison of the results with the theory of Bergh and Tijdeman, and with experimental results from the literature and from shock tube tests. Finally, the model is applied for the optimization of ILPs, representative of the systems used in the aeronautics industry, and compared to the experimental results performed on an axial compressor. In those tests, a typical ILP geometry is installed on the compressor casing to measure static pressure fluctuations in the rotor tip gap. Simultaneous measurements with a fast response flush-mounted sensor provided data for comparison and validation of the predicted transfer function.


Sign in / Sign up

Export Citation Format

Share Document