Novel Ultrasound Images Shot Noise Removal Algorithm Based On 2-D Wavelet Decomposition and Stable Distribution Model

Author(s):  
Daifeng Zha
2021 ◽  
Vol 6 (7) ◽  
pp. 107-113
Author(s):  
Charles Nnamdi Udekwe ◽  
Akinlolu Adediran Ponnle

The geometry of the imaged transverse cross-section of carotid arteries in in-vivo B-mode ultrasound images are most times irregular, unsymmetrical, full of speckles and usually non-uniform. We had earlier developed a technique of cardinal point symmetry landmark distribution model (CPS-LDM) to completely characterize the Region of Interest (ROI) of the geometric shape of thick-walled simulated B-mode ultrasound images of carotid artery imaged in the transverse plane, but this was based on the symmetric property of the image. In this paper, this developed technique was applied to completely characterize the region of interest of the geometric shape of in-vivo B-mode ultrasound images of non-uniform carotid artery imaged in the transverse plane. In order to adapt the CPS-LD Model to the in-vivo carotid artery images, the single VS-VS vertical symmetry line common to the four ROIs of the symmetric image is replaced with each ROI having its own VS-VS vertical symmetry line. This adjustment enables the in-vivo carotid artery images possess symmetric properties, hence, ensuring that all mathematical operations of the CPS-LD Model are conveniently applied to them. This adaptability was observed to work well in segmenting the in-vivo carotid artery images. This paper shows the adaptive ability of the developed CPS-LD Model to successfully annotate and segment in-vivo B-mode ultrasound images of carotid arteries in the transverse cross-sectional plane either they are symmetrical or unsymmetrical.


Author(s):  
Awais Nazir ◽  
Muhammad Shahzad Younis ◽  
Muhammad Khurram Shahzad

Speckle noise is one of the most difficult noises to remove especially in medical applications. It is a nuisance in ultrasound imaging systems which is used in about half of all medical screening systems. Thus, noise removal is an important step in these systems, thereby creating reliable, automated, and potentially low cost systems. Herein, a generalized approach MFNR (Multi-Frame Noise Removal) is used, which is a complete Noise Removal system using KDE (Kernal Density Estimation). Any given type of noise can be removed if its probability density function (PDF) is known. Herein, we extracted the PDF parameters using KDE. Noise removal and detail preservation are not contrary to each other as the case in single-frame noise removal methods. Our results showed practically complete noise removal using MFNR algorithm compared to standard noise removal tools. The Peak Signal to Noise Ratio (PSNR) performance was used as a comparison metric. This paper is an extension to our previous paper where MFNR Algorithm was showed as a general purpose complete noise removal tool for all types of noises


Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 938
Author(s):  
Hyunho Choi ◽  
Jechang Jeong

Ultrasound (US) imaging can examine human bodies of various ages; however, in the process of obtaining a US image, speckle noise is generated. The speckle noise inhibits physicians from accurately examining lesions; thus, a speckle noise removal method is essential technology. To enhance speckle noise elimination, we propose a novel algorithm using the characteristics of speckle noise and filtering methods based on speckle reducing anisotropic diffusion (SRAD) filtering, discrete wavelet transform (DWT) using symmetry characteristics, weighted guided image filtering (WGIF), and gradient domain guided image filtering (GDGIF). The SRAD filter is exploited as a preprocessing filter because it can be directly applied to a medical US image containing speckle noise without a log-compression. The wavelet domain has the advantage of suppressing the additive noise. Therefore, a homomorphic transformation is utilized to convert the multiplicative noise into additive noise. After two-level DWT decomposition is applied, to suppress the residual noise of an SRAD filtered image, GDGIF and WGIF are exploited to reduce noise from seven high-frequency sub-band images and one low-frequency sub-band image, respectively. Finally, a noise-free image is attained through inverse DWT and an exponential transform. The proposed algorithm exhibits excellent speckle noise elimination and edge conservation as compared with conventional denoising methods.


Sign in / Sign up

Export Citation Format

Share Document