Real-Time Traffic Scheduling Algorithm for MIMO-OFDMA Systems

Author(s):  
H. Lei ◽  
X. Zhang ◽  
Y. Wang
Author(s):  
Mohammed Mahfoudi ◽  
Moulhime El Bekkali ◽  
Abdellah Najid ◽  
Mohamed El Ghazi ◽  
Said Mazer

2015 ◽  
Vol 61 (4) ◽  
pp. 409-414 ◽  
Author(s):  
Mohammed Mahfoudi ◽  
Moulhime El Bekkali ◽  
Abdellah Najd ◽  
M. El Ghazi ◽  
Said Mazer

Abstract The Third Generation Partnership Project (3GPP) has developed a new cellular standard based packet switching allowing high data rate, 100 Mbps in Downlink and 50 Mbps in Uplink, and having the flexibility to be used in different bandwidths ranging from 1.4 MHz up to 20 MHz, this standard is termed LTE (Long Term Evolution). Radio Resource Management (RRM) procedure is one of the key design roles for improving LTE system performance, Packet scheduling is one of the RRM mechanisms and it is responsible for radio resources allocation, However, Scheduling algorithms are not defined in 3GPP specifications. Therefore, it gets a track interests for researchers. In this paper we proposed a new LTE scheduling algorithm and we compared its performances with other well known algorithms such as Proportional Fairness (PF), Modified Largest Weighted Delay First (MLWDF), and Exponential Proportional Fairness (EXPPF) in downlink direction. The simulation results shows that the proposed scheduler satisfies the quality of service (QoS) requirements of the real-time traffic in terms of packet loss ratio (PLR), average throughput and packet delay. This paper also discusses the key issues of scheduling algorithms to be considered in future traffic requirements.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 157
Author(s):  
Hyeong-Jun Kim ◽  
Min-Hee Choi ◽  
Mah-Ho Kim ◽  
Suk Lee

The rapid development and adaptation of advanced driver assistance systems (ADAS) and autonomous driving increases the burden of in-vehicle networks. In-vehicle networks are now required to provide a fast data rate and bounded delay for real-time operation, while conventional protocols such as controller area networks, local interconnected networks, and FlexRay begin to show limitations. Ethernet-based time-sensitive network (TSN) technology has been proposed as an alternative. TSN is a set of Ethernet standards being developed by the IEEE TSN task group, which aims to satisfy requirements such as real-time operation, stability, and low and bounded latency, and it can be used in automotive, industrial, and aerospace applications. This study introduces several standards for Ethernet traffic scheduling based on TSN technology and proposes a heuristic-based scheduling algorithm for Ethernet scheduling. In addition, three network configurations are simulated using OMNeT++ to show the applicability. The heuristic TSN scheduling algorithm is a straightforward and systematic procedure for practical network designers.


Sign in / Sign up

Export Citation Format

Share Document