An Improved Localization Method Using Error Probability Distribution for Underwater Sensor Networks

Author(s):  
T. Bian ◽  
R. Venkatesan ◽  
C. Li
Author(s):  
Sanfeng Zhu ◽  
Naigao Jin ◽  
Lei Wang ◽  
Xueshu Zheng ◽  
Shuailing Yang ◽  
...  

Quantum ◽  
2020 ◽  
Vol 4 ◽  
pp. 304
Author(s):  
Leonid P. Pryadko

Error probability distribution associated with a given Clifford measurement circuit is described exactly in terms of the circuit error-equivalence group, or the circuit subsystem code previously introduced by Bacon, Flammia, Harrow, and Shi. This gives a prescription for maximum-likelihood decoding with a given measurement circuit. Marginal distributions for subsets of circuit errors are also analyzed; these generate a family of related asymmetric LDPC codes of varying degeneracy. More generally, such a family is associated with any quantum code. Implications for decoding highly-degenerate quantum codes are discussed.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 107353-107363
Author(s):  
Onel L. Alcaraz Lopez ◽  
Hirley Alves ◽  
Richard Demo Souza ◽  
Matti Latva-Aho

Author(s):  
Meiyan Zhang ◽  
Wenyu Cai

Background: Effective 3D-localization in mobile underwater sensor networks is still an active research topic. Due to the sparse characteristic of underwater sensor networks, AUVs (Autonomous Underwater Vehicles) with precise positioning abilities will benefit cooperative localization. It has important significance to study accurate localization methods. Methods: In this paper, a cooperative and distributed 3D-localization algorithm for sparse underwater sensor networks is proposed. The proposed algorithm combines with the advantages of both recursive location estimation of reference nodes and the outstanding self-positioning ability of mobile AUV. Moreover, our design utilizes MMSE (Minimum Mean Squared Error) based recursive location estimation method in 2D horizontal plane projected from 3D region and then revises positions of un-localized sensor nodes through multiple measurements of Time of Arrival (ToA) with mobile AUVs. Results: Simulation results verify that the proposed cooperative 3D-localization scheme can improve performance in terms of localization coverage ratio, average localization error and localization confidence level. Conclusion: The research can improve localization accuracy and coverage ratio for whole underwater sensor networks.


2016 ◽  
Vol 1 (2) ◽  
pp. 1-7
Author(s):  
Karamjeet Kaur ◽  
Gianetan Singh Sekhon

Underwater sensor networks are envisioned to enable a broad category of underwater applications such as pollution tracking, offshore exploration, and oil spilling. Such applications require precise location information as otherwise the sensed data might be meaningless. On the other hand, security critical issue as underwater sensor networks are typically deployed in harsh environments. Localization is one of the latest research subjects in UWSNs since many useful applying UWSNs, e.g., event detecting. Now day’s large number of localization methods arrived for UWSNs. However, few of them take place stability or security criteria. In purposed work taking up localization in underwater such that various wireless sensor nodes get localize to each other. RSS based localization technique used remove malicious nodes from the communication intermediate node list based on RSS threshold value. Purposed algorithm improves more throughput and less end to end delay without degrading energy dissipation at each node. The simulation is conducted in MATLAB and it suggests optimal result as comparison of end to end delay with and without malicious node.


Sign in / Sign up

Export Citation Format

Share Document