Distance based duplex mode selection in large scale peer-to-peer wireless networks

Author(s):  
Kasun T. Hemachandra ◽  
Abraham O. Fapojuwo
2012 ◽  
Vol 23 (2) ◽  
pp. 323-334
Author(s):  
Guo-Feng YAN ◽  
Jian-Xin WANG ◽  
Shu-Hong CHEN

Author(s):  
Jamshid Abouei ◽  
Alireza Bayesteh ◽  
Masoud Ebrahimi ◽  
Amir K. Khandani

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Federica Paganelli ◽  
David Parlanti

Current trends towards the Future Internet are envisaging the conception of novel services endowed with context-aware and autonomic capabilities to improve end users’ quality of life. The Internet of Things paradigm is expected to contribute towards this ambitious vision by proposing models and mechanisms enabling the creation of networks of “smart things” on a large scale. It is widely recognized that efficient mechanisms for discovering available resources and capabilities are required to realize such vision. The contribution of this work consists in a novel discovery service for the Internet of Things. The proposed solution adopts a peer-to-peer approach for guaranteeing scalability, robustness, and easy maintenance of the overall system. While most existing peer-to-peer discovery services proposed for the IoT support solely exact match queries on a single attribute (i.e., the object identifier), our solution can handle multiattribute and range queries. We defined a layered approach by distinguishing three main aspects: multiattribute indexing, range query support, peer-to-peer routing. We chose to adopt an over-DHT indexing scheme to guarantee ease of design and implementation principles. We report on the implementation of a Proof of Concept in a dangerous goods monitoring scenario, and, finally, we discuss test results for structural properties and query performance evaluation.


2018 ◽  
Vol 7 (2.7) ◽  
pp. 1051
Author(s):  
Gera Jaideep ◽  
Bhanu Prakash Battula

Peer to Peer (P2P) network in the real world is a class of systems that are made up of thousands of nodes in distributed environments. The nodes are decentralized in nature. P2P networks are widely used for sharing resources and information with ease. Gnutella is one of the well known examples for such network. Since these networks spread across the globe with large scale deployment of nodes, adversaries use them as a vehicle to launch DDoS attacks. P2P networks are exploited to make attacks over hosts that provide critical services to large number of clients across the globe. As the attacker does not make a direct attack it is hard to detect such attacks and considered to be high risk threat to Internet based applications. Many techniques came into existence to defeat such attacks. Still, it is an open problem to be addressed as the flooding-based DDoS is difficult to handle as huge number of nodes are compromised to make attack and source address spoofing is employed. In this paper, we proposed a framework to identify and secure P2P communications from a DDoS attacks in distributed environment. Time-to-Live value and distance between source and victim are considered in the proposed framework. A special agent is used to handle information about nodes, their capacity, and bandwidth for efficient trace back. A Simulation study has been made using NS2 and the experimental results reveal the significance of the proposed framework in defending P2P network and target hosts from high risk DDoS attacks.  


2014 ◽  
Vol 26 (6) ◽  
pp. 1316-1331 ◽  
Author(s):  
Gang Chen ◽  
Tianlei Hu ◽  
Dawei Jiang ◽  
Peng Lu ◽  
Kian-Lee Tan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document