Medical image processing and analysis for nuclear medicine diagnosis

Author(s):  
Piyamas Suapang ◽  
Kobchai Dejhan ◽  
Surapun Yimmun
2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Chen Zhao ◽  
Jungang Han ◽  
Yang Jia ◽  
Lianghui Fan ◽  
Fan Gou

Deep learning technique has made a tremendous impact on medical image processing and analysis. Typically, the procedure of medical image processing and analysis via deep learning technique includes image segmentation, image enhancement, and classification or regression. A challenge for supervised deep learning frequently mentioned is the lack of annotated training data. In this paper, we aim to address the problems of training transferred deep neural networks with limited amount of annotated data. We proposed a versatile framework for medical image processing and analysis via deep active learning technique. The framework includes (1) applying deep active learning approach to segment specific regions of interest (RoIs) from raw medical image by using annotated data as few as possible; (2) generative adversarial Network is employed to enhance contrast, sharpness, and brightness of segmented RoIs; (3) Paced Transfer Learning (PTL) strategy which means fine-tuning layers in deep neural networks from top to bottom step by step to perform medical image classification or regression tasks. In addition, in order to understand the necessity of deep-learning-based medical image processing tasks and provide clues for clinical usage, class active map (CAM) is employed in our framework to visualize the feature maps. To illustrate the effectiveness of the proposed framework, we apply our framework to the bone age assessment (BAA) task using RSNA dataset and achieve the state-of-the-art performance. Experimental results indicate that the proposed framework can be effectively applied to medical image analysis task.


2016 ◽  
Vol 705 ◽  
pp. 012047
Author(s):  
C. Vergara ◽  
J.P. Graffigna ◽  
E. Marino ◽  
S. Omati ◽  
P. Holleywell

Sign in / Sign up

Export Citation Format

Share Document