Stackelberg Differential Game based Resource Allocation in Wireless Networks with Fog Computing

Author(s):  
Bingjie Liu ◽  
Haitao Xu ◽  
Xianwei Zhou ◽  
Zhu Han
2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Lin Duo ◽  
Qianqian Li ◽  
Haitao Xu ◽  
Yunhui Zhou

With the development of wisdom network, this paper assumes that intelligent devices become more and more intelligent, which can easily collect and provide a variety of context awareness data. The research goal is to design a dynamic conflict resolution strategy for context-aware resource allocation. The limited availability of resources inevitably leads to conflicts. Considering the characteristics of wisdom network, the quality of service when solving conflicts, a mechanism is proposed to improve the quality of services and to solve the resources allocation conflicts. This paper constructs the optimal model of context-aware based on a differential game and optimizes the resource allocation of context-aware based on the priority of scenarios. Fog computing is used to provide enough computing resources for the control of resource allocation of context-aware. The Bellman dynamic programming is introduced to solve the feedback Nash equilibrium solution of the proposed differential game model, to obtain the optimal allocation of service resources and solve the effectiveness of resource allocation.


2021 ◽  
Vol 117 ◽  
pp. 498-509
Author(s):  
Chu-ge Wu ◽  
Wei Li ◽  
Ling Wang ◽  
Albert Y. Zomaya

2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Lingyun Lu ◽  
Tian Wang ◽  
Wei Ni ◽  
Kai Li ◽  
Bo Gao

This paper presents a suboptimal approach for resource allocation of massive MIMO-OFDMA systems for high-speed train (HST) applications. An optimization problem is formulated to alleviate the severe Doppler effect and maximize the energy efficiency (EE) of the system. We propose to decouple the problem between the allocations of antennas, subcarriers, and transmit powers and solve the problem by carrying out the allocations separately and iteratively in an alternating manner. Fast convergence can be achieved for the proposed approach within only several iterations. Simulation results show that the proposed algorithm is superior to existing techniques in terms of system EE and throughput in different system configurations of HST applications.


Sign in / Sign up

Export Citation Format

Share Document