A Design of Automatic Switching Mechanism for Procedural Memory

Author(s):  
JeongYon Shim
2019 ◽  
Vol 62 (10) ◽  
pp. 3790-3807 ◽  
Author(s):  
Sara Ferman ◽  
Liat Kishon-Rabin ◽  
Hila Ganot-Budaga ◽  
Avi Karni

Purpose The purpose of this study was to delineate differences between children with specific language impairment (SLI), typical age–matched (TAM) children, and typical younger (TY) children in learning and mastering an undisclosed artificial morphological rule (AMR) through exposure and usage. Method Twenty-six participants (eight 10-year-old children with SLI, 8 TAM children, and ten 8-year-old TY children) were trained to master an AMR across multiple training sessions. The AMR required a phonological transformation of verbs depending on a semantic distinction: whether the preceding noun was animate or inanimate. All participants practiced the application of the AMR to repeated and new (generalization) items, via judgment and production tasks. Results The children with SLI derived significantly less benefit from practice than their peers in learning most aspects of the AMR, even exhibiting smaller gains compared to the TY group in some aspects. Children with SLI benefited less than TAM and even TY children from training to judge and produce repeated items of the AMR. Nevertheless, despite a significant disadvantage in baseline performance, the rate at which they mastered the task-specific phonological regularities was as robust as that of their peers. On the other hand, like 8-year-olds, only half of the SLI group succeeded in uncovering the nature of the AMR and, consequently, in generalizing it to new items. Conclusions Children with SLI were able to learn language aspects that rely on implicit, procedural learning, but experienced difficulties in learning aspects that relied on the explicit uncovering of the semantic principle of the AMR. The results suggest that some of the difficulties experienced by children with SLI when learning a complex language regularity cannot be accounted for by a broad, language-related, procedural memory disability. Rather, a deficit—perhaps a developmental delay in the ability to recruit and solve language problems and establish explicit knowledge regarding a language task—can better explain their difficulties in language learning.


2020 ◽  
Vol 63 (12) ◽  
pp. 4162-4178
Author(s):  
Emily Jackson ◽  
Suze Leitão ◽  
Mary Claessen ◽  
Mark Boyes

Purpose Previous research into the working, declarative, and procedural memory systems in children with developmental language disorder (DLD) has yielded inconsistent results. The purpose of this research was to profile these memory systems in children with DLD and their typically developing peers. Method One hundred four 5- to 8-year-old children participated in the study. Fifty had DLD, and 54 were typically developing. Aspects of the working memory system (verbal short-term memory, verbal working memory, and visual–spatial short-term memory) were assessed using a nonword repetition test and subtests from the Working Memory Test Battery for Children. Verbal and visual–spatial declarative memory were measured using the Children's Memory Scale, and an audiovisual serial reaction time task was used to evaluate procedural memory. Results The children with DLD demonstrated significant impairments in verbal short-term and working memory, visual–spatial short-term memory, verbal declarative memory, and procedural memory. However, verbal declarative memory and procedural memory were no longer impaired after controlling for working memory and nonverbal IQ. Declarative memory for visual–spatial information was unimpaired. Conclusions These findings indicate that children with DLD have deficits in the working memory system. While verbal declarative memory and procedural memory also appear to be impaired, these deficits could largely be accounted for by working memory skills. The results have implications for our understanding of the cognitive processes underlying language impairment in the DLD population; however, further investigation of the relationships between the memory systems is required using tasks that measure learning over long-term intervals. Supplemental Material https://doi.org/10.23641/asha.13250180


2001 ◽  
Vol 209 (2) ◽  
pp. 105-117 ◽  
Author(s):  
Thomas Kleinsorge ◽  
Herbert Heuer ◽  
Volker Schmidtke

Summary. When participants have to shift between four tasks that result from a factorial combination of the task dimensions judgment (numerical vs. spatial) and mapping (compatible vs. incompatible), a characteristic profile of shift costs can be observed that is suggestive of a hierarchical switching mechanism that operates upon a dimensionally ordered task representation, with judgment on the top and the response on the bottom of the task hierarchy ( Kleinsorge & Heuer, 1999 ). This switching mechanism results in unintentional shifts on lower levels of the task hierarchy whenever a shift on a higher level has to be performed, leading to non-shift costs on the lower levels. We investigated whether this profile depends on the way in which the individual task dimensions are cued. When the cues for the task dimensions were exchanged, the basic pattern of shift costs was replicated with only minor modifications. This indicates that the postulated hierarchical switching mechanism operates independently of the specifics of task cueing.


Sign in / Sign up

Export Citation Format

Share Document