The Monkeys are Coming ─ Design of Agricultural Damage Warning System by IoT-Based Objects Detection and Tracking

Author(s):  
Kuei-Chung Chang ◽  
Zi-Wen Guo
2016 ◽  
Vol 7 (4) ◽  
pp. 489-508 ◽  
Author(s):  
Tarek R. Sheltami ◽  
Shehryar Khan ◽  
Elhadi M. Shakshuki ◽  
Menshawi K. Menshawi

Author(s):  
Hadeel N. Abdullah ◽  
Nuha H. Abdulghafoor

The detection and tracking of moving objects attracted a lot of concern because of the vast computer vision applications. This paper proposes a new algorithm based on several methods for identifying, detecting, and tracking an object in order to develop an effective and efficient system in several applications. This algorithm has three main parts: the first part for background modeling and foreground extraction, the second part for smoothing, filtering and detecting moving objects within the video frame and the last part includes tracking and prediction of detected objects. In this proposed work, a new algorithm to detect moving objects from video data is designed by the Fast Principle Component Purist (FPCP). Then we used an optimal filter that performs well to reduce noise through the median filter. The Fast Region-convolution neural networks (Fast-RCNN) is used to add smoothness to the spatial identification of objects and their areas. Then the detected object is tracked by Kalman Filter. Experimental results show that our algorithm adapts to different situations and outperforms many existing algorithms.


Author(s):  
Wael Farag ◽  

In this paper, a real-time road-Object Detection and Tracking (LR_ODT) method for autonomous driving is proposed. The method is based on the fusion of lidar and radar measurement data, where they are installed on the ego car, and a customized Unscented Kalman Filter (UKF) is employed for their data fusion. The merits of both devices are combined using the proposed fusion approach to precisely provide both pose and velocity information for objects moving in roads around the ego car. Unlike other detection and tracking approaches, the balanced treatment of both pose estimation accuracy and its real-time performance is the main contribution in this work. The proposed technique is implemented using the high-performance language C++ and utilizes highly optimized math and optimization libraries for best real-time performance. Simulation studies have been carried out to evaluate the performance of the LR_ODT for tracking bicycles, cars, and pedestrians. Moreover, the performance of the UKF fusion is compared to that of the Extended Kalman Filter fusion (EKF) showing its superiority. The UKF has outperformed the EKF on all test cases and all the state variable levels (-24% average RMSE). The employed fusion technique show how outstanding is the improvement in tracking performance compared to the use of a single device (-29% RMES with lidar and -38% RMSE with radar).


Sign in / Sign up

Export Citation Format

Share Document