fast region
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 22)

H-INDEX

8
(FIVE YEARS 2)

Author(s):  
Yujia Liu ◽  
Xu Liu ◽  
Sifan Peng ◽  
Nan Gui ◽  
Xingtuan Yang ◽  
...  

2021 ◽  
Vol 13 (10) ◽  
pp. 250
Author(s):  
Luis A. Corujo ◽  
Emily Kieson ◽  
Timo Schloesser ◽  
Peter A. Gloor

Creating intelligent systems capable of recognizing emotions is a difficult task, especially when looking at emotions in animals. This paper describes the process of designing a “proof of concept” system to recognize emotions in horses. This system is formed by two elements, a detector and a model. The detector is a fast region-based convolutional neural network that detects horses in an image. The model is a convolutional neural network that predicts the emotions of those horses. These two elements were trained with multiple images of horses until they achieved high accuracy in their tasks. In total, 400 images of horses were collected and labeled to train both the detector and the model while 40 were used to test the system. Once the two components were validated, they were combined into a testable system that would detect equine emotions based on established behavioral ethograms indicating emotional affect through the head, neck, ear, muzzle, and eye position. The system showed an accuracy of 80% on the validation set and 65% on the test set, demonstrating that it is possible to predict emotions in animals using autonomous intelligent systems. Such a system has multiple applications including further studies in the growing field of animal emotions as well as in the veterinary field to determine the physical welfare of horses or other livestock.


Author(s):  
Zhan Li ◽  
Xiaopeng Zheng ◽  
Bir Bhanu ◽  
Shun Long ◽  
Qingfeng Zhang ◽  
...  
Keyword(s):  

2020 ◽  
Vol 10 (23) ◽  
pp. 8718
Author(s):  
Zhi-Hao Chen ◽  
Jyh-Ching Juang

To ensure safety in aircraft flying, we aimed to use deep learning methods of nondestructive examination with multiple defect detection paradigms for X-ray image detection. The use of the fast region-based convolutional neural network (Fast R-CNN)-driven model was to augment and improve the existing automated non-destructive testing (NDT) diagnosis. Within the context of X-ray screening, limited numbers and insufficient types of X-ray aeronautics engine defect data samples can, thus, pose another problem in the performance accuracy of training models tackling multiple detections. To overcome this issue, we employed a deep learning paradigm of transfer learning tackling both single and multiple detection. Overall, the achieved results obtained more than 90% accuracy based on the aeronautics engine radiographic testing inspection system net (AE-RTISNet) retrained with eight types of defect detection. Caffe structure software was used to perform network tracking detection over multiple Fast R-CNNs. We determined that the AE-RTISNet provided the best results compared with the more traditional multiple Fast R-CNN approaches, which were simple to translate to C++ code and installed in the Jetson™ TX2 embedded computer. With the use of the lightning memory-mapped database (LMDB) format, all input images were 640 × 480 pixels. The results achieved a 0.9 mean average precision (mAP) on eight types of material defect classifier problems and required approximately 100 microseconds.


Author(s):  
Zhi-Hao Chen ◽  
Jyh-Ching Juang

To ensure the safety in aircraft flying, we aim use of the deep learning methods of nondestructive examination with multiple defect detection paradigms for X-ray image detection posed. The use of the Fast Region-based Convolutional Neural Networks (Fast R-CNN) driven model seeks to augment and improve existing automated Non-Destructive Testing (NDT) diagnosis. Within the context of X-ray screening, limited numbers insufficient types of X-ray aeronautics engine defect data samples can thus pose another problem in training model tackling multiple detections perform accuracy. To overcome this issue, we employ a deep learning paradigm of transfer learning tackling both single and multiple detection. Overall the achieve result get more then 90% accuracy based on the AE-RTISNet retrained with 8 types of defect detection. Caffe structure software to make networks tracking detection over multiples Fast R-CNN. We consider the AE-RTISNet provide best results to the more traditional multiple Fast R-CNN approaches simpler translate to C++ code and installed in the Jetson™ TX2 embedded computer. With the use of LMDB format, all images using input images of size 640 × 480 pixel. The results scope achieves 0.9 mean average precision (mAP) on 8 types of material defect classifiers problem and requires approximately 100 microseconds.


Author(s):  
Paula Useche ◽  
Robinson Jimenez-Moreno ◽  
Javier Martinez Baquero

The following paper presents the development of an algorithm, in charge of detecting, classifying and grabbing occluded objects, using artificial intelligence techniques, machine vision for the recognition of the environment, an anthropomorphic manipulator for the manipulation of the elements. 5 types of tools were used for their detection and classification, where the user selects one of them, so that the program searches for it in the work environment and delivers it in a specific area, overcoming difficulties such as occlusions of up to 70%. These tools were classified using two CNN (convolutional neural network) type networks, a fast R-CNN (fast region-based CNN) for the detection and classification of occlusions, and a DAG-CNN (directed acyclic graph-CNN) for the classification tools. Furthermore, a Haar classifier was trained in order to compare its ability to recognize occlusions with respect to the fast R-CNN. Fast R-CNN and DAG-CNN achieved 70.9% and 96.2% accuracy, respectively, Haar classifiers with about 50% accuracy, and an accuracy of grip and delivery of occluded objects of 90% in the application, was achieved.


2020 ◽  
Vol 191 ◽  
pp. 107099 ◽  
Author(s):  
Luciana Olivia Dias ◽  
Clécio R. Bom ◽  
Elisangela L. Faria ◽  
Manuel Blanco Valentín ◽  
Maury Duarte Correia ◽  
...  

Author(s):  
Hadeel N. Abdullah ◽  
Nuha H. Abdulghafoor

The detection and tracking of moving objects attracted a lot of concern because of the vast computer vision applications. This paper proposes a new algorithm based on several methods for identifying, detecting, and tracking an object in order to develop an effective and efficient system in several applications. This algorithm has three main parts: the first part for background modeling and foreground extraction, the second part for smoothing, filtering and detecting moving objects within the video frame and the last part includes tracking and prediction of detected objects. In this proposed work, a new algorithm to detect moving objects from video data is designed by the Fast Principle Component Purist (FPCP). Then we used an optimal filter that performs well to reduce noise through the median filter. The Fast Region-convolution neural networks (Fast-RCNN) is used to add smoothness to the spatial identification of objects and their areas. Then the detected object is tracked by Kalman Filter. Experimental results show that our algorithm adapts to different situations and outperforms many existing algorithms.


Sign in / Sign up

Export Citation Format

Share Document