scholarly journals Objects detection and tracking using fast principle component purist and kalman filter

Author(s):  
Hadeel N. Abdullah ◽  
Nuha H. Abdulghafoor

The detection and tracking of moving objects attracted a lot of concern because of the vast computer vision applications. This paper proposes a new algorithm based on several methods for identifying, detecting, and tracking an object in order to develop an effective and efficient system in several applications. This algorithm has three main parts: the first part for background modeling and foreground extraction, the second part for smoothing, filtering and detecting moving objects within the video frame and the last part includes tracking and prediction of detected objects. In this proposed work, a new algorithm to detect moving objects from video data is designed by the Fast Principle Component Purist (FPCP). Then we used an optimal filter that performs well to reduce noise through the median filter. The Fast Region-convolution neural networks (Fast-RCNN) is used to add smoothness to the spatial identification of objects and their areas. Then the detected object is tracked by Kalman Filter. Experimental results show that our algorithm adapts to different situations and outperforms many existing algorithms.

With the advent in technology, security and authentication has become the main aspect in computer vision approach. Moving object detection is an efficient system with the goal of preserving the perceptible and principal source in a group. Surveillance is one of the most crucial requirements and carried out to monitor various kinds of activities. The detection and tracking of moving objects are the fundamental concept that comes under the surveillance systems. Moving object recognition is challenging approach in the field of digital image processing. Moving object detection relies on few of the applications which are Human Machine Interaction (HMI), Safety and video Surveillance, Augmented Realism, Transportation Monitoring on Roads, Medical Imaging etc. The main goal of this research is the detection and tracking moving object. In proposed approach, based on the pre-processing method in which there is extraction of the frames with reduction of dimension. It applies the morphological methods to clean the foreground image in the moving objects and texture based feature extract using component analysis method. After that, design a novel method which is optimized multilayer perceptron neural network. It used the optimized layers based on the Pbest and Gbest particle position in the objects. It finds the fitness values which is binary values (x_update, y_update) of swarm or object positions. Method and output achieved final frame creation of the moving objects in the video using BLOB ANALYSER In this research , an application is designed using MATLAB VERSION 2016a In activation function to re-filter the given input and final output calculated with the help of pre-defined sigmoid. In proposed methods to find the clear detection and tracking in the given dataset MOT, FOOTBALL, INDOOR and OUTDOOR datasets. To improve the detection accuracy rate, recall rate and reduce the error rates, False Positive and Negative rate and compare with the various classifiers such as KNN, MLPNN and J48 decision Tree.


Video analytics plays a very important role in identification or detection and tracking of objects, this intern find application in many fields and domains. Novel learning methods or techniques built on Neural Networks requires larger dataset for training the results, the output obtained depends on how well the training is done. The proposed method of Weighted Cumulative Summation (WCS) is an approach based on background modelling to segment the moving objects. This method adapts and tunes the background variations instantaneously as the video frame arrives. The segmentation obtained is compared with other basic methods. The result obtained infers improvements in segmentation and in removal of ghost effect in the video. Extended Kalman Filter (EKF) is used to track the detector response. The responses of the detection from WCS are provided as input to EKF to track the moving object. The results are tabulated and represented in the form of graphs for analysis. The results are compared with three different video datasets and the results are noticeably good. The methods WCS can be used in the applications were data set is not available.


2020 ◽  
Vol 38 (2A) ◽  
pp. 246-254
Author(s):  
Hadeel N. Abdullah ◽  
Nuha H. Abdulghafoor

Object detection and tracking are key mission in computer visibility applications, including civil or military surveillance systems. However, there are major challenges that have an effective role in the accuracy of detection and tracking such as the ability of the system to track the target and the response speed of the system in different environments as well as the presence of noise in the captured video sequence. In this proposed work, a new algorithm to detect moving objects from video data is designed by the Fast Principle Component Purist (FPCP). Then, we used an ideal filter that performs well to reduce noise through the morphological filter. The Blob analysis is used to add smoothness to the spatial identification of objects and their areas, and finally, the detected object is tracked by Kalman Filter. The applied examples demonstrated the efficiency and capability of the proposed system for noise removal, detection accuracy and tracking.


Detection And Tracking Of Multiple Moving Objects From A Sequence Of Video Frame And Obtaining Visual Records Of Objects Play An Important Role In The Video Surveillance Systems. Transform And Filtering Technique Designed For Video Pattern Matching And Moving Object Detection, Failed To Handle Large Number Of Objects In Video Frame And Further Needs To Be Optimized. Several Existing Methods Perform Detection And Tracking Of Moving Objects. However, The Performance Efficiency Of The Existing Methods Needs To Be Optimized To Achieve More Robust And Reliable Detection And Tracking Of Moving Objects. In Order To Improve The Pattern Matching Accuracy, A Quantized Kalman Filter-Based Pattern Matching (Qkf-Pm) Technique Is Proposed For Detecting And Tracking Of Moving Objects. The Present Phase Includes Three Functionalities: Top-Down Approach, Kernel Pattern Segment Function And Kalman Filtering. First, The Top-Down Approach Based On Kalman Filtering (Kf) Technique Is Performed To Detect The Chromatic Shadows Of Objects. Next, Kernel Pattern Segment Function Creates The Seed Points For Detecting Moving Object Pattern. Finally, Object Tracking Is Performed Using The Proposed Quantized Kalman Filter Based On The Center Of Seed Point Affinity Feature Values Are Used To Track The Moving Objects In A Particular Region Using The Minimum Bounding Box Approach. Experimental Results Reveals That The Proposed Qkf-Pm Technique Achieves Better Performance In Terms Of True Detection Rate, Pattern Matching Accuracy, Pattern Matching Time, And Object Tracking Accuracy With Respect To The Number Of Video Frames Per Second.


Author(s):  
Jeevith S. H. ◽  
Lakshmikanth S.

Moving object detection and tracking (MODT) is the major challenging issue in computer vision, which plays a vital role in many applications like robotics, surveillance, navigation systems, militaries, environmental monitoring etc. There are several existing techniques, which has been used to detect and track the moving object in Surveillance system. Therefore it is necessary to develop new algorithm or modified algorithm which is robust to work in both day and night time. In this paper, modified BGS technique is proposed. The video is first converted to number of frames, then these frame are applied to modified background subtraction technique with adaptive threshold which gives detected object. Kalman filter technique is used for tracking the detected object. The experimental results shows this proposed method can efficiently and correctly detect and track the moving objects with less processing time which is compared with existing techniques.


Author(s):  
Wael Farag ◽  

In this paper, a real-time road-Object Detection and Tracking (LR_ODT) method for autonomous driving is proposed. The method is based on the fusion of lidar and radar measurement data, where they are installed on the ego car, and a customized Unscented Kalman Filter (UKF) is employed for their data fusion. The merits of both devices are combined using the proposed fusion approach to precisely provide both pose and velocity information for objects moving in roads around the ego car. Unlike other detection and tracking approaches, the balanced treatment of both pose estimation accuracy and its real-time performance is the main contribution in this work. The proposed technique is implemented using the high-performance language C++ and utilizes highly optimized math and optimization libraries for best real-time performance. Simulation studies have been carried out to evaluate the performance of the LR_ODT for tracking bicycles, cars, and pedestrians. Moreover, the performance of the UKF fusion is compared to that of the Extended Kalman Filter fusion (EKF) showing its superiority. The UKF has outperformed the EKF on all test cases and all the state variable levels (-24% average RMSE). The employed fusion technique show how outstanding is the improvement in tracking performance compared to the use of a single device (-29% RMES with lidar and -38% RMSE with radar).


Sign in / Sign up

Export Citation Format

Share Document