Machine Learning-based Object Recognition Technology for Bird Identification System

Author(s):  
Yu-Quan Ou ◽  
Cheng-Hsun Lin ◽  
Tzu-Chi Huang ◽  
Ming-Fong Tsai
APL Photonics ◽  
2020 ◽  
Vol 5 (12) ◽  
pp. 126103
Author(s):  
B. Limbacher ◽  
S. Schoenhuber ◽  
M. Wenclawiak ◽  
M. A. Kainz ◽  
A. M. Andrews ◽  
...  

2021 ◽  
Vol 157 (A3) ◽  
Author(s):  
D Handayani ◽  
W Sediono ◽  
A Shah

The paper describes the supervised method approach to identifying vessel anomaly behaviour. The vessel anomaly behaviour is determined by learning from self-reporting maritime systems based on the Automatic Identification System (AIS). The AIS is a real world vessel reporting data system, which has been recently made compulsory by the International Convention for the Safety of Life and Sea (SOLAS) for vessels over 300 gross tons and most commercial vessels such as cargo ships, passenger vessels, tankers, etc. In this paper, we describe the use of Bayesian networks (BNs) approach to identify the behaviour of the vessel of interest. The BNs is a machine learning technique based on probabilistic theory that represents a set of random variables and their conditional independencies via directed acyclic graph (DAG). Previous studies showed that the BNs have important advantages compared to other machine learning techniques. Among them are that expert knowledge can be included in the BNs model, and that humans can understand and interpret the BNs model more readily. This work proves that the BNs technique is applicable to the identification of vessel anomaly behaviour.


2021 ◽  
Author(s):  
Jona Raphael ◽  
Ben Eggleston ◽  
Ryan Covington ◽  
Tatianna Evanisko ◽  
Sasha Bylsma ◽  
...  

<p><strong>Operational oil discharges from ships</strong>, also known as “bilge dumping,” have been identified as a major source of petroleum products entering our oceans, cumulatively exceeding the largest oil spills, such as the Exxon Valdez and Deepwater Horizon spills, even when considered over short time spans. However, we still don’t have a good estimate of</p><ul><li>How much oil is being discharged;</li> <li>Where the discharge is happening;</li> <li>Who the responsible vessels are.</li> </ul><p>This makes it difficult to prevent and effectively respond to oil pollution that can damage our marine and coastal environments and economies that depend on them.</p><p> </p><p>In this presentation we will share SkyTruth’s recent work to address these gaps using machine learning tools to detect oil pollution events and identify the responsible vessels when possible. We use a convolutional neural network (CNN) in a ResNet-34 architecture to perform <strong>pixel segmentation</strong> on all incoming <strong>Sentinel-1 synthetic aperture radar</strong> (SAR) imagery to classify slicks. Despite the satellites’ incomplete oceanic coverage, we have been detecting an average of <strong>135 vessel slicks per month</strong>, and have identified several geographic hotspots where oily discharges are occurring regularly. For the images that capture a vessel in the act of discharging oil, we rely on an <strong>Automatic Identification System</strong> (AIS) database to extract details about the ships, including vessel type and flag state. We will share our experience</p><ul><li>Making sufficient training data from inherently sparse satellite image datasets;</li> <li>Building a computer vision model using PyTorch and fastai;</li> <li>Fully automating the process in the Amazon Web Services (AWS) cloud.</li> </ul><p>The application has been running continuously since August 2020, has processed over 380,000 Sentinel-1 images, and has populated a database with more than 1100 high-confidence slicks from vessels. We will be discussing <strong>preliminary results</strong> from this dataset and remaining challenges to be overcome.</p><p> </p><p>Our objective in making this information and the underlying code, models, and training data <strong>freely available to the public</strong> and governments around the world is to enable public pressure campaigns to improve the prevention of and response to pollution events. Learn more at https://skytruth.org/bilge-dumping/</p>


Author(s):  
Jose-Raul Ruiz-Sarmiento ◽  
Javier Monroy ◽  
Francisco-Angel Moreno ◽  
Javier Gonzalez-Jimenez

2013 ◽  
pp. 896-926
Author(s):  
Mehrtash Harandi ◽  
Javid Taheri ◽  
Brian C. Lovell

Recognizing objects based on their appearance (visual recognition) is one of the most significant abilities of many living creatures. In this study, recent advances in the area of automated object recognition are reviewed; the authors specifically look into several learning frameworks to discuss how they can be utilized in solving object recognition paradigms. This includes reinforcement learning, a biologically-inspired machine learning technique to solve sequential decision problems and transductive learning, and a framework where the learner observes query data and potentially exploits its structure for classification. The authors also discuss local and global appearance models for object recognition, as well as how similarities between objects can be learnt and evaluated.


Sign in / Sign up

Export Citation Format

Share Document