Sequence Learning for Images Recognition in Videos with Differential Neural Networks

Author(s):  
Yingxu Wang ◽  
Omar Zatarain ◽  
Tony Tsai ◽  
Daniel Graves
2020 ◽  
Vol 34 (02) ◽  
pp. 1316-1323
Author(s):  
Zuozhu Liu ◽  
Thiparat Chotibut ◽  
Christopher Hillar ◽  
Shaowei Lin

Motivated by the celebrated discrete-time model of nervous activity outlined by McCulloch and Pitts in 1943, we propose a novel continuous-time model, the McCulloch-Pitts network (MPN), for sequence learning in spiking neural networks. Our model has a local learning rule, such that the synaptic weight updates depend only on the information directly accessible by the synapse. By exploiting asymmetry in the connections between binary neurons, we show that MPN can be trained to robustly memorize multiple spatiotemporal patterns of binary vectors, generalizing the ability of the symmetric Hopfield network to memorize static spatial patterns. In addition, we demonstrate that the model can efficiently learn sequences of binary pictures as well as generative models for experimental neural spike-train data. Our learning rule is consistent with spike-timing-dependent plasticity (STDP), thus providing a theoretical ground for the systematic design of biologically inspired networks with large and robust long-range sequence storage capacity.


2016 ◽  
Vol 28 (11) ◽  
pp. 2474-2504 ◽  
Author(s):  
Yuwei Cui ◽  
Subutai Ahmad ◽  
Jeff Hawkins

The ability to recognize and predict temporal sequences of sensory inputs is vital for survival in natural environments. Based on many known properties of cortical neurons, hierarchical temporal memory (HTM) sequence memory recently has been proposed as a theoretical framework for sequence learning in the cortex. In this letter, we analyze properties of HTM sequence memory and apply it to sequence learning and prediction problems with streaming data. We show the model is able to continuously learn a large number of variable order temporal sequences using an unsupervised Hebbian-like learning rule. The sparse temporal codes formed by the model can robustly handle branching temporal sequences by maintaining multiple predictions until there is sufficient disambiguating evidence. We compare the HTM sequence memory with other sequence learning algorithms, including statistical methods—autoregressive integrated moving average; feedforward neural networks—time delay neural network and online sequential extreme learning machine; and recurrent neural networks—long short-term memory and echo-state networks on sequence prediction problems with both artificial and real-world data. The HTM model achieves comparable accuracy to other state-of-the-art algorithms. The model also exhibits properties that are critical for sequence learning, including continuous online learning, the ability to handle multiple predictions and branching sequences with high-order statistics, robustness to sensor noise and fault tolerance, and good performance without task-specific hyperparameter tuning. Therefore, the HTM sequence memory not only advances our understanding of how the brain may solve the sequence learning problem but is also applicable to real-world sequence learning problems from continuous data streams.


2020 ◽  
Vol 16 (11) ◽  
pp. e1008342
Author(s):  
Zhewei Zhang ◽  
Huzi Cheng ◽  
Tianming Yang

The brain makes flexible and adaptive responses in a complicated and ever-changing environment for an organism’s survival. To achieve this, the brain needs to understand the contingencies between its sensory inputs, actions, and rewards. This is analogous to the statistical inference that has been extensively studied in the natural language processing field, where recent developments of recurrent neural networks have found many successes. We wonder whether these neural networks, the gated recurrent unit (GRU) networks in particular, reflect how the brain solves the contingency problem. Therefore, we build a GRU network framework inspired by the statistical learning approach of NLP and test it with four exemplar behavior tasks previously used in empirical studies. The network models are trained to predict future events based on past events, both comprising sensory, action, and reward events. We show the networks can successfully reproduce animal and human behavior. The networks generalize the training, perform Bayesian inference in novel conditions, and adapt their choices when event contingencies vary. Importantly, units in the network encode task variables and exhibit activity patterns that match previous neurophysiology findings. Our results suggest that the neural network approach based on statistical sequence learning may reflect the brain’s computational principle underlying flexible and adaptive behaviors and serve as a useful approach to understand the brain.


2008 ◽  
Vol 67 ◽  
pp. 33
Author(s):  
Pierre Orban ◽  
Philippe Peigneux ◽  
Frederic Laberenne ◽  
Pierre Maquet ◽  
Habib Benali ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document