Fuzzy discrete event supervisory control capable of temporal reasoning in urban traffic management

Author(s):  
A. Akramizadeh ◽  
Mohammad-R. Akbarzadeh-T. ◽  
M. Khademi
2021 ◽  
Vol 10 (3) ◽  
pp. 177
Author(s):  
Haochen Zou ◽  
Keyan Cao ◽  
Chong Jiang

Urban road traffic spatio-temporal characters reflect how citizens move and how goods are transported, which is crucial for trip planning, traffic management, and urban design. Video surveillance camera plays an important role in intelligent transport systems (ITS) for recognizing license plate numbers. This paper proposes a spatio-temporal visualization method to discover urban road vehicle density, city-wide regional vehicle density, and hot routes using license plate number data recorded by video surveillance cameras. To improve the accuracy of the visualization effect, during data analysis and processing, this paper utilized Internet crawler technology and adopted an outlier detection algorithm based on the Dixon detection method. In the design of the visualization map, this paper established an urban road vehicle traffic index to intuitively and quantitatively reveal the traffic operation situation of the area. To verify the feasibility of the method, an experiment in Guiyang on data from road video surveillance camera system was conducted. Multiple urban traffic spatial and temporal characters are recognized concisely and efficiently from three visualization maps. The results show the satisfactory performance of the proposed framework in terms of visual analysis, which will facilitate traffic management and operation.


2020 ◽  
Vol 53 (2) ◽  
pp. 1776-1782
Author(s):  
Rômulo Meira-Góes ◽  
Christoforos Keroglou ◽  
Stéphane Lafortune

2021 ◽  
Vol 13 (4) ◽  
pp. 1859
Author(s):  
Kadir Diler Alemdar ◽  
Ahmet Tortum ◽  
Ömer Kaya ◽  
Ahmet Atalay

Intersections are the most important regions in terms of urban traffic management. The intersection areas on the corridor should be analyzed together for consistency in traffic engineering. To do so, three intersections on the Vatan Street corridor in İstanbul, the most crowded city of Turkey, were examined. Various geometric and signal designs were performed for intersections and the most suitable corridor design was analyzed. The corridor designs were modeled with the PTV VISSIM microsimulation software. The most suitable corridor design was evaluated by using the results obtained from the microsimulation via analytical hierarchy process (AHP) and technique for order preference by similarity to ideal solution (TOPSIS) from multi criteria decision analysis (MCDA) methods. The evaluation criteria in the study are vehicle delay, queue length, stopped delay, stops, travel time, vehicle safety, CO emission, fuel consumption, and construction cost. As a result, the current and the most suitable alternative corridors were compared according to the comparison parameters and up to 80% improvements were observed. Thus, some advantages were obtained in terms of energy, environment, time, and cost.


Sign in / Sign up

Export Citation Format

Share Document