Bladder Cancer Prediction Using Genetic Algorithm and Fuzzy Rule-Based System

Author(s):  
Panchami V U ◽  
Manish T I
2001 ◽  
Vol 11 (05) ◽  
pp. 427-443 ◽  
Author(s):  
GARY G. YEN ◽  
PHAYUNG MEESAD

In this paper, a method for automatic construction of a fuzzy rule-based system from numerical data using the Incremental Learning Fuzzy Neural (ILFN) network and the Genetic Algorithm is presented. The ILFN network was developed for pattern classification applications. The ILFN network, which employed fuzzy sets and neural network theory, equips with a fast, one-pass, on-line, and incremental learning algorithm. After trained, the ILFN network stored numerical knowledge in hidden units, which can then be directly interpreted into if-then rule bases. However, the rules extracted from the ILFN network are not in an optimized fuzzy linguistic form. In this paper, a knowledge base for fuzzy expert system is extracted from the hidden units of the ILFN classifier. A genetic algorithm is then invoked, in an iterative manner, to reduce number of rules and select only discriminate features from input patterns needed to provide a fuzzy rule-based system. Three computer simulations using a simulated 2-D 3-class data, the well-known Fisher's Iris data set, and the Wisconsin breast cancer data set were performed. The fuzzy rule-based system derived from the proposed method achieved 100% and 97.33% correct classification on the 75 patterns for training set and 75 patterns for test set, respectively. For the Wisconsin breast cancer data set, using 400 patterns for training and 299 patterns for testing, the derived fuzzy rule-based system achieved 99.5% and 98.33% correct classification on the training set and the test set, respectively.


2014 ◽  
Vol 8 (3) ◽  
pp. 335-356 ◽  
Author(s):  
Andreiwid Sheffer Corrêa ◽  
Alexandre de Assis Mota ◽  
Lia Toledo Moreira Mota ◽  
Pedro Luiz Pizzigatti Corrêa

Purpose – The purpose of this study is to present a system called NEBULOSUS, which is a fuzzy rule-based expert system for assessing the maturity level of an agency regarding technical interoperability. Design/methodology/approach – The study introduces the use of artificial intelligence and fuzzy logic to deal with the imprecision and uncertainty present in the assessment process. To validate the system proposed and demonstrate its operation, the study takes into account the Brazilian technical interoperability maturity model, based on the Brazilian Government Interoperability Framework (GIF). Findings – With the system proposed and its methodology, it could be possible to increase the assessment process to management level and to provide decision-making support without worrying about technical details that make it complex and time-consuming. Moreover, NEBULOSUS is a standalone system that offers an easy-to-use, open and flexible structuring database that can be adapted by governments throughout the world. It will serve as a tool and contribute to governments’ expectations for continuous improvement of their technologies. Originality/value – This study contributes toward filling a gap in general interoperability architectures, which is a means to provide an objective method to evaluate GIF adherence by governments. The proposed system allows governments to configure their technical models and GIF to assess information and communication technology resources.


2012 ◽  
Vol 66 (8) ◽  
pp. 1766-1773 ◽  
Author(s):  
J. Yazdi ◽  
S. A. A. S. Neyshabouri

Population growth and urbanization in the last decades have increased the vulnerability of properties and societies in flood-prone areas. Vulnerability analysis is one of the main factors used to determine the necessary measures of flood risk reduction in floodplains. At present, the vulnerability of natural disasters is analyzed by defining the various physical and social indices. This study presents a model based on a fuzzy rule-based system to address various ambiguities and uncertainties from natural variability, and human knowledge and preferences in vulnerability analysis. The proposed method is applied for a small watershed as a case study and the obtained results are compared with one of the index approaches. Both approaches present the same ranking for the sub-basin's vulnerability in the watershed. Finally, using the scores of vulnerability in different sub-basins, a vulnerability map of the watershed is presented.


Sign in / Sign up

Export Citation Format

Share Document