Multiuser Detection of an Uplink MU-Large Scale MIMO OFDM using Radial Basis Function

Author(s):  
Shefin Shoukath ◽  
Haris. P. A
2019 ◽  
Vol 16 (2) ◽  
pp. 627-632 ◽  
Author(s):  
S. Valarmathy ◽  
R. Ramani

The Magnetic Resonance Imaging (MRI) based classification process for the classification of dementia is presented in this work. The classifier's performance may be enhanced by means of improving the extracted features that are inputted into its classifier. These MRI images are all duly segmented by making use of the wavelet. For choosing a subset that has optimal features, it may become inflexible and all issues relating to the feature selection will be shown as the NonDeterministic Polynomial (NP)-hard. The work further deals with techniques of optimization that are used in the case of feature selection for picking an optimal feature set. The Principal Component Analysis (PCA) will find an application of a large scale in signal processing. The noise estimation and the source separation are all possible. For this, the Radial Basis Function (RBF) and its classifier have been optimized to this structure by making use of the Genetic Algorithm (GA)-Artificial Immune System (AIS) algorithm. Such an optimized classifier of the RBF will classify a feature set that is provided by the GA, the AIS and the GA-AIS algorithm of feature selection. A classifier will be evaluated on the basis of its performance metrics. All classifiers will be evaluated keeping the accuracy, specificity, and sensitivity in making use of an optimized set of features. The results of the experiment have clearly demonstrated the feature selection and its effectiveness to improve the accuracy of the classification of all the images.


Author(s):  
Anoop A. Mullur ◽  
Achille Messac

The process of constructing computationally benign approximations of expensive computer simulation codes, or metamodeling, is a critical component of several large-scale Multidisciplinary Design Optimization approaches. Such applications typically involve complex models, such as finite elements, computational fluid dynamics, or chemical processes. The decision regarding the most appropriate metamodeling approach usually depends on the type of application. However, several newly-proposed kernel-based metamodeling approaches can provide consistently accurate performance for a wide variety of applications. The authors recently proposed one such novel and effective metamodeling approach — the Extended Radial Basis Function approach — and reported encouraging results. To further understand the advantages and limitations of this new approach, we compare its performance to that of the typical radial basis function approach, and another closely related method — kriging. Several test functions with varying problem dimensions and degrees of nonlinearity are used to compare the accuracies of the metamodels using these metamodeling approaches. We consider several performance criteria, such as metamodel accuracy. effect of sampling technique, effect of problem dimension, and computational complexity. The results suggest that the E-RBF approach is a potentially powerful metamodeling approach for MDO-based applications.


Sign in / Sign up

Export Citation Format

Share Document