soft particle
Recently Published Documents


TOTAL DOCUMENTS

225
(FIVE YEARS 46)

H-INDEX

32
(FIVE YEARS 4)

Particuology ◽  
2022 ◽  
Vol 68 ◽  
pp. 88-100
Author(s):  
Xu Liu ◽  
Nan Gui ◽  
Xiyuan Cui ◽  
Xingtuan Yang ◽  
Jiyuan Tu ◽  
...  

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuto Tamura ◽  
Marie Tani ◽  
Rei Kurita

AbstractComposite materials have been actively developed in recent years because they are highly functional such as lightweight, high yield strength, and superior load response. In spite of importance of the composite materials, mechanisms of the mechanical responses of composites have been unrevealed. Here, in order to understand the mechanical responses of composites, we investigated the origin and nature of the force distribution in heterogeneous materials using a soft particle model. We arranged particles with different softness in a lamellar structure and then we applied homogeneous pressure to the top surface of the system. It is found that the density in each region differently changes and then the density difference induces a nonlinear force distribution. In addition, it is found that the attractive interaction suppresses the density difference and then the force distribution is close to the theoretical prediction. Those findings may lead material designs for functional composite materials.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Lena Porsmo Stoveland ◽  
Tine Frøysaker ◽  
Maartje Stols-Witlox ◽  
Terje Grøntoft ◽  
Calin Constantin Steindal ◽  
...  

AbstractLow-risk removal of embedded surface soiling on delicate heritage objects can require novel alternatives to traditional cleaning systems. Edvard Munch’s monumental Aula paintings (1911–16) have a long history of exposure to atmospheric pollution and cleaning campaigns that have compromised the appearance and the condition of these important artworks. Soiling removal from porous and water-sensitive, unvarnished oil paintings continues to be a major conservation challenge. This paper presents the approach and results of research into the effect and efficiency of three novel systems used for soiling removal: soft particle blasting, CO2-snow blasting, and Nanorestore Gel® Dry and Peggy series hydrogels. Cleaning tests were performed on accelerated-aged and artificially soiled mock-ups consisting of unvarnished oil paint and chalk-glue grounds. Visual and analytical assessment (magnification using a light microscope and scanning electron microscope, as well as colour- and gloss measurement) was carried out before and after mock-up cleaning tests and the results were compared to those obtained using the dry polyurethane sponges employed in the most recent Aula surface cleaning campaign (2009–11). Although the results varied, the Nanorestore Gel® series proved promising with respect to improved soiling removal efficiency, and reduced pigment loss for the water-sensitive surfaces evaluated, compared to dry sponges.


2021 ◽  
Vol 104 (4) ◽  
Author(s):  
Ran Tao ◽  
Madelyn Wilson ◽  
Eric R. Weeks

Author(s):  
Shasha Zou ◽  
Jiaen Ren ◽  
Zihan Wang ◽  
Hu Sun ◽  
Yang Chen

The impact of the dynamic evolution of the Storm-Enhanced Density (SED) on the upward ion fluxes during the March 06, 2016 geomagnetic storm is studied using comprehensive multi-scale datasets. This storm was powered by a Corotating Interaction Region (CIR), and the minimum Sym-H reached ∼−110 nT. During the ionospheric positive storm phase, the SED formed and the associated plume and polar cap patches occasionally drifted anti-sunward across the polar cap. When these high-density structures encountered positive vertical flows, large ion upward fluxes were produced, with the largest upward flux reaching 3 × 1014 m−2s−1. These upflows were either the type-1 ion upflow associated with fast flow channels, such as the subauroral polarization stream (SAPS) channel, or the type-2 ion upflow due to soft particle precipitations in the cusp region. The total SED-associated upflow flux in the dayside cusp can be comparable to the total upflow flux in the nightside auroral zone despite the much smaller cusp area compared with the auroral zone. During the ionospheric negative storm phase, the ionospheric densities within the SED and plume decreased significantly and thus led to largely reduced upward fluxes. This event analysis demonstrates the critical role of the ionospheric high-density structures in creating large ion upward fluxes. It also suggests that the dynamic processes in the coupled ionosphere-thermosphere system and the resulting state of the ionospheric storm are crucial for understanding the temporal and spatial variations of ion upflow fluxes and thus should be incorporated into coupled geospace models for improving our holistic understanding of the role of ionospheric plasma in the geospace system.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 974
Author(s):  
Alžbeta Bohiniková ◽  
Iveta Jančigová ◽  
Ivan Cimrák

The inner viscosity of a biological red blood cell is about five times larger than the viscosity of the blood plasma. In this work, we use dissipative particles to enable the proper viscosity contrast in a mesh-based red blood cell model. Each soft particle represents a coarse-grained virtual cluster of hemoglobin proteins contained in the cytosol of the red blood cell. The particle interactions are governed by conservative and dissipative forces. The conservative forces have purely repulsive character, whereas the dissipative forces depend on the relative velocity between the particles. We design two computational experiments that mimic the classical viscometers. With these experiments we study the effects of particle suspension parameters on the inner cell viscosity and provide parameter sets that result in the correct viscosity contrast. The results are validated with both static and dynamic biological experiment, showing an improvement in the accuracy of the original model without major increase in computational complexity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Arne Lüken ◽  
Lucas Stüwe ◽  
Johannes Lohaus ◽  
John Linkhorst ◽  
Matthias Wessling

AbstractDuring soft matter filtration, colloids accumulate in a compressible porous cake layer on top of the membrane surface. The void size between the colloids predominantly defines the cake-specific permeation resistance and the corresponding filtration efficiency. While higher fluxes are beneficial for the process efficiency, they compress the cake and increase permeation resistance. However, it is not fully understood how soft particles behave during cake formation and how their compression influences the overall cake properties. This study visualizes the formation and compression process of soft filter cakes in microfluidic model systems. During cake formation, we analyze single-particle movements inside the filter cake voids and how they interact with the whole filter cake morphology. During cake compression, we visualize reversible and irreversible compression and distinguish the two phenomena. Finally, we confirm the compression phenomena by modeling the soft particle filter cake using a CFD-DEM approach. The results underline the importance of considering the compression history when describing the filter cake morphology and its related properties. Thus, this study links single colloid movements and filter cake compression to the overall cake behavior and narrows the gap between single colloid events and the filtration process.


Sign in / Sign up

Export Citation Format

Share Document