A Modified Method for Brain MRI Segmentation Using Dempster-Shafer Theory

Author(s):  
Salma Akter Lima ◽  
Md. Rabiul Islam
2015 ◽  
Vol 26 (10) ◽  
pp. 105402 ◽  
Author(s):  
Jie Liu ◽  
Xi Lu ◽  
Yunpeng Li ◽  
Xiaowu Chen ◽  
Yong Deng

Author(s):  
Ghazanfar Latif ◽  
Jaafar Alghazo ◽  
Fadi N. Sibai ◽  
D.N.F. Awang Iskandar ◽  
Adil H. Khan

Background: Variations of image segmentation techniques, particularly those used for Brain MRI segmentation, vary in complexity from basic standard Fuzzy C-means (FCM) to more complex and enhanced FCM techniques. Objective: In this paper, a comprehensive review is presented on all thirteen variations of FCM segmentation techniques. In the review process, the concentration is on the use of FCM segmentation techniques for brain tumors. Brain tumor segmentation is a vital step in the process of automatically diagnosing brain tumors. Unlike segmentation of other types of images, brain tumor segmentation is a very challenging task due to the variations in brain anatomy. The low contrast of brain images further complicates this process. Early diagnosis of brain tumors is indeed beneficial to patients, doctors, and medical providers. Results: FCM segmentation works on images obtained from magnetic resonance imaging (MRI) scanners, requiring minor modifications to hospital operations to early diagnose tumors as most, if not all, hospitals rely on MRI machines for brain imaging. In this paper, we critically review and summarize FCM based techniques for brain MRI segmentation.


2021 ◽  
Author(s):  
Zhenxi Zhang ◽  
Jie Li ◽  
Chunna Tian ◽  
Zhusi Zhong ◽  
Zhicheng Jiao ◽  
...  

2002 ◽  
Vol 1804 (1) ◽  
pp. 173-178 ◽  
Author(s):  
Lawrence A. Klein ◽  
Ping Yi ◽  
Hualiang Teng

The Dempster–Shafer theory for data fusion and mining in support of advanced traffic management is introduced and tested. Dempste–Shafer inference is a statistically based classification technique that can be applied to detect traffic events that affect normal traffic operations. It is useful when data or information sources contribute partial information about a scenario, and no single source provides a high probability of identifying the event responsible for the received information. The technique captures and combines whatever information is available from the data sources. Dempster’s rule is applied to determine the most probable event—as that with the largest probability based on the information obtained from all contributing sources. The Dempster–Shafer theory is explained and its implementation described through numerical examples. Field testing of the data fusion technique demonstrated its effectiveness when the probability masses, which quantify the likelihood of the postulated events for the scenario, reflect current traffic and weather conditions.


Author(s):  
Benjamin Lambert ◽  
Maxime Louis ◽  
Senan Doyle ◽  
Florence Forbes ◽  
Michel Dojat ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3727
Author(s):  
Joel Dunham ◽  
Eric Johnson ◽  
Eric Feron ◽  
Brian German

Sensor fusion is a topic central to aerospace engineering and is particularly applicable to unmanned aerial systems (UAS). Evidential Reasoning, also known as Dempster-Shafer theory, is used heavily in sensor fusion for detection classification. High computing requirements typically limit use on small UAS platforms. Valuation networks, the general name given to evidential reasoning networks by Shenoy, provides a means to reduce computing requirements through knowledge structure. However, these networks use conditional probabilities or transition potential matrices to describe the relationships between nodes, which typically require expert information to define and update. This paper proposes and tests a novel method to learn these transition potential matrices based on evidence injected at nodes. Novel refinements to the method are also introduced, demonstrating improvements in capturing the relationships between the node belief distributions. Finally, novel rules are introduced and tested for evidence weighting at nodes during simultaneous evidence injections, correctly balancing the injected evidenced used to learn the transition potential matrices. Together, these methods enable updating a Dempster-Shafer network with significantly less user input, thereby making these networks more useful for scenarios in which sufficient information concerning relationships between nodes is not known a priori.


Energy ◽  
1992 ◽  
Vol 17 (3) ◽  
pp. 205-214
Author(s):  
Aurora A. Kawahara ◽  
Peter M. Williams

Sign in / Sign up

Export Citation Format

Share Document