Virtual Machine and Data Placement Based on Physical Particle Optimization Model for Running Remote Sensing Scientific Flows

Author(s):  
Bica Mihai ◽  
Dorian Gorgan
Agriculture ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 54 ◽  
Author(s):  
Mohamad Awad

Many crop yield estimation techniques are being used, however the most effective one is based on using geospatial data and technologies such as remote sensing. However, the remote sensing data which are needed to estimate crop yield are insufficient most of the time due to many problems such as climate conditions (% of clouds), and low temporal resolution. There have been many attempts to solve the lack of data problem using very high temporal and very low spatial resolution images such as Modis. Although this type of image can compensate for the lack of data due to climate problems, they are only suitable for very large homogeneous crop fields. To compensate for the lack of high spatial resolution remote sensing images due to climate conditions, a new optimization model was created. Crop yield estimation is improved and its precision is increased based on the new model that includes the use of the energy balance equation. To verify the results of the crop yield estimation based on the new model, information from local farmers about their potato crop yields for the same year were collected. The comparison between the estimated crop yields and the actual production in different fields proves the efficiency of the new optimization model.


2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Chengzhi Deng ◽  
Yaning Zhang ◽  
Shengqian Wang ◽  
Shaoquan Zhang ◽  
Wei Tian ◽  
...  

Sparse regression based unmixing has been recently proposed to estimate the abundance of materials present in hyperspectral image pixel. In this paper, a novel sparse unmixing optimization model based on approximate sparsity, namely, approximate sparse unmixing (ASU), is firstly proposed to perform the unmixing task for hyperspectral remote sensing imagery. And then, a variable splitting and augmented Lagrangian algorithm is introduced to tackle the optimization problem. In ASU, approximate sparsity is used as a regularizer for sparse unmixing, which is sparser thanl1regularizer and much easier to be solved thanl0regularizer. Three simulated and one real hyperspectral images were used to evaluate the performance of the proposed algorithm in comparison tol1regularizer. Experimental results demonstrate that the proposed algorithm is more effective and accurate for hyperspectral unmixing than state-of-the-artl1regularizer.


2021 ◽  
Vol 11 (21) ◽  
pp. 9940
Author(s):  
Jack Marquez ◽  
Oscar H. Mondragon ◽  
Juan D. Gonzalez

Cloud computing systems are rapidly evolving toward multicloud architectures supported on heterogeneous hardware. Cloud service providers are widely offering different types of storage infrastructures and multi-NUMA architecture servers. Existing cloud resource allocation solutions do not comprehensively consider this heterogeneous infrastructure. In this study, we present a novel approach comprised of a hierarchical framework based on genetic programming to solve problems related to data placement and virtual machine allocation for analytics applications running on heterogeneous hardware with a variety of storage types and nonuniform memory access. Our approach optimizes data placement using the Hadoop File System on heterogeneous storage devices on multicloud systems. It guarantees the efficient allocation of virtual machines on physical machines with multiple NUMA (nonuniform memory access) domains by minimizing contention between workloads. We prove that our solutions for data placement and virtual machine allocation outperform other state-of-the-art approaches.


Sign in / Sign up

Export Citation Format

Share Document